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Why GenAl in drug discovery?



GenAl = Generative Modeling with Deep Neural Networks
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Drug discovery: R&D is about 4-7y

Research & Development Trials & Approval

Clinical trials

Research ‘ Drug development Review & Approval
1-3 years 3-4 years 4-7 years 1-2 years
/ \-« | Lead identification & optimization | | Phase 1-3 trials |

Target identification & validation 20-80 people
100-300 people

1,000-3,000 people

Compound screening
Optimization by analyzing

Understanding of molecular and . .
discovered mechanisms

biochemical mechanisms
Evaluation & Approval

The regulating body reviews the
evidence

In vitro studies
Experiments on isolated targets,
cells and organoids.

|dentification of putatative causes of
disease or conditions

Identification of drug candidates

oI dles  Post-release monitoring

\ / Experiments on living organisms
. (animal models).




Drug discovery 2.0: The premise of GenAl is to speed up the process (and make it cheaper)

Research & Development Trials & Approval

Clinical trials
Research Drug development Review & Approval
tSyears— 1 year ~S=4years~ 1-2 years 4-7 years 1-2 years
. : — PP /' Phase 1-3 trials -
Target identification & validation Lead identification & optimization 20-80 people

Compound screening
Optimization by analyzing
discovered mechanisms

100-300 people
Understanding of molecular and 1,000-3,000 people

biochemical mechanisms
Evaluation & Approval

The regulating body reviews the
evidence

In vitro studies
Experiments on isolated targets,
cells and organoids.

|dentification of putatative causes of
disease or conditions

|dentification of drug candidates . Post-release monitoring

In vivo studies

\ / / Experiments on living organisms
/

. (animal models).

For instance: N\ \ /"';For instance:
Open databases (e.g.: see CZI's data: link) ~ GenAl for (de novo) drug design
GenAl for understanding mechanisms GenAl for phenotypic profiling 5


https://www.czbiohub.org/tools/?datasets-platforms

What can we do with GenAl in drug
discovery?



(Selected) Tasks that can be enhanced with GenAl
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How can we use GenAl in drug
discovery?



Understanding regulatory mechanisms of diseases

Regulators are natural compounds that control biochemical
reactions.

dysregulation

N\

A dysregulation results in a misbehavior of a biological system.

/ EXAMPLE: Vitamin B, \

In folate methionine cycle: Methionine synthase transfers the
methyl group to the vitamin and then transfers the methyl group

CHy
to homocysteine, converting that to methionine. )HA/ -Ar J\/E LAr
’ ° AT .y )i

v

Vitamin B,, deficiency results in in an increased homocysteine No-methyl THF tetrahydmfo.ate (THF)
level and the trapping of folate as 5-methyl-tetrahydrofolate, from o, B e o
which THF (the active form of folate) cannot be recovered. j ‘E { P

© 3 (3 H
THF plays an important role in DNA synthesis. O\LI/\gHa \g/\g“s

homocysteine (hyc)

. . . . . methionine (met)
wa result, vitamin B,, deficiency causes megaloblastic anemm/




GenAl for screening regulators of biochemical processes

NatinLab developed a GenAl-based in-house platform to
screen natural regulators for a target of Alzheimer’s disease.

» INatinLab
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Enzyme kinetics: Do it fast and accurately!

Enzyme kinetics the discipline that studies

- how enzymatic reactions take place, E+S =<=———ES ——» E+P
- the rate at which they occur, T .
Binding Catalysis

- and the influence of environmental conditions in
the reaction process.

/ EXAMPLE \ 5

Michaelis-Menten model describes how the (initial) reaction +0
rate depends on the position of the substrate-binding equilibrium 125
and the rate constant: 1001
oo — Vinax [S] v def 1)
- max — 'vcat 7
K’M + [S] tot voo |

T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

Q: How to calculate K, and k., in an efficient way?

cat
/ 11




GenAl for enzyme kinetics: A local model

a)

Measurements at different . ) " )
substrate concentrations Michaelis-Menten plot Michaelis-Menten plot
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a. The standard approach using multiple measurements and the Michaelis-Menten plot.
b. Our proposed computational method: Use a single measurement and a simulator to identify parameters.
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Tomczak, J. M., & Weglarz-Tomczak, E. (2019). Estimating kinetic constants in the Michaelis—Menten model from one enzymatic assay using Approximate Bayesian Computation. FEBS letters, 593(19), 2742-2750.



GenAl for enzyme kinetics: COVID-19

a b
= S | == 500.0 « 6000 — 500.0
§10000 T | == 250.0 § = 250.0
. ope . S m— 125.0 [ =— 125.0
During COVID-19, we used a modified version § o — o250 § o0 .| = a0
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It greatly helped us to speed up the process!

Ouir first findings on May 17, 2020
(on bioRxiv ~2 months after first infections

Kwm
in the Netherlands).
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Weglarz-Tomczak, E., Tomczak, J. M., Talma, M., Burda-Grabowska, M., Giurg, M., & Brul, S. (2021). Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Scientific reports, 11(1), 3640.



GenAl for enzyme kinetics: A global model

Q: Is it possible to learn an Al model that mimics
enzyme Kinetics?

Given:

- exogenous: the initial concentrations of S and E
- (scenario 1) a few seconds of measurements of P
- (scenario 2) only the initial concentration of P

GOAL: Generate the remaining of P (horizon)

Baseline: TiDE with and without ex (Das et al., 2023)

Our approach: A non-linear extension of TiDE with ex

Preliminary work (unpublished!)
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GenAl for enzyme kinetics: A global model

Approach
TiDE
TiDE + ex

Our + ex

Take-aways!

First: Using exogenous information is crucial (as expected.

Scenario 1
2.607+0.103
0.601+0.024

0.494+0.017

Scenario 2
46.392+0.13
9.999+0.519

9.305+0.289

Second: Using exogenous allows generating a signal for

given initial conditions pretty well!

Third: Our approach gives a slight boost!

Fourth: Very promising results, more to come!
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Phenotypic profiling: Getting insights into Mechanism of Action (MOA) of drugs

Image-based phenotypic profiling of small molecules
can be used for:

- identification and characterisation of small molecules
in drug discovery

- Getting important insights into their mechanisms of
action (MOA).

/ EXAMPLE: BBBC021 \

We used the BBBC021 dataset containing microscopy
images of MCF7 breast cancer cell lines treated with 113
compounds for 24 hours.

We focus on 39 compounds with a visible impact on cell https://www.broadinstitute.org/news/lipocyte-profiler-metabolic-biology-tool
morphology, which was associated with 12 distinct MoA
labels

Eventually, we got 2,526 wells (bags), 133,628 cells (total

meer of instances), and 12 MoAs (labels). /
16




MixMIL: A probabilistic model with attention mechanism

a Single-cell transcriptomics b bag of instance embs Instance weights
i ]y
Instance emb X =|:|eR*Q = wy(X)=softmax|| : | |€e RS
) ——— ol i
Embeddin Q
9 x; € R \ /
attention-pooled . T Q
2v(X) =X w~(X) €eR
Single-cell microscopy bag embs 7 ),l, +(X)
' Instance emb GLMM model random effects
- B T
© g w— 9(El) = "o+ %(X)"B 5~ NO.riloxd)
mpbeddin —_—
9 T; € R bag / covariate Bag emb ~ ~ N(0, J,%IQXQ)
label effects effects

a. MixMIL uses predefined instance embeddings from domain-specific unsupervised models.

b. Generalized multi-instance mixed model framework defining MixMIL.
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Engelmann, J. P., Palma, A., Tomczak, J. M., Theis, F., & Casale, F. P. (2024, April). Mixed Models with Multiple Instance Learning. In International Conference on Artificial Intelligence and Statistics (pp. 3664-3672). PMLR. (oral)



MixMIL for Mechanism of Action Prediction

Method Bal. Accuracy F1 Macro F1 Micro

Bayes-MIL 0.63 +£0.02 0.63+0.02 0.70£0.01 Bayes-MIL

ABMIL 0.72 +£0.02 0.73+0.01 0.76£0.01

Gated ABMIL 0.67 +0.03 0.65+0.03  0.70£0.03

Additive ABMIL 0.41 4+ 0.00 0.34 +£0.00  0.47£0.02 s & % e

DSMIL 0.89 +0.02 0.89+0.02  0.90+0.01 ABMIL S C . ﬁ,

MixMIL 0.94 £+ 0.02 0.94 £0.01 0.95+0.01 E‘;@ ‘_“ 2 /: v 'y
DSMIL

Our approach achieves SOTA results on the multi-

MixMIL

label classification problem!

94% of images are properly assigned to a MOA!
Additionally, our approach properly identifies less
important images by assigning them low attention

weight.
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Engelmann, J. P., Palma, A., Tomczak, J. M., Theis, F., & Casale, F. P. (2024, April). Mixed Models with Multiple Instance Learning. In International Conference on Artificial Intelligence and Statistics (pp. 3664-3672). PMLR.



GenAl for drug discovery:
Conclusion



GenAl offers more than LLMs

GenAl can (should!) be used for computational
chemistry and drug discovery

GenAl can drastically speed up the R&D process

GenAl beyond tasks like generating drugs (drug
design), molecular docking, 3D structure generation

GenAl can be useful in:

- understanding biochemical mechanisms,
- pharmacokinetics/dynamics,

- mechanism of action,

- enzyme Kkinetics,

- and many more!

Future: GenAl for virtual cells/organisms

20
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