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How?

Fully-observed 
(e.g., PixelCNN)

Implicit models
(e.g., GANs)

Prescribed models
(e.g., VAE)

Latent variable 
models
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Variational inference for Latent Variable Models

decoder

encoder

prior

= Variational Auto-Encoder
+ reparameterization trick
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Standard prior is too strong and 
overregularizes the encoder.

What is the “optimal” prior?
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New Prior (Variational Mixture of Posteriors Prior)

● We look for the optimal prior using the Lagrange function:

● The solution is simply the aggregated posterior.

● We approximate it using K pseudo-inputs instead of N observations:

they are trained from scratch 
by SGD
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New Prior (Variational Mixture of Posteriors Prior)

● VampPrior is closely related to the Empirical Bayes.

○ We propose a new approach that learns parameters of the prior and combines the variational 

inference with the EB approach.

● VampPrior is closely related to the Information Bottleneck.

○ The aggregated posterior naturally plays the role of the prior.

○ The VampPrior brings the VAE and the IB formulations together.
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New Prior (Variational Mixture of Posteriors Prior)

● Is it advantageous to take K=N? 

○ Not necessarily...

○ Let’s re-write (one more time) the ELBO:

○ We will see this effect also during experiments.

⇒ x independent of z !
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Hierarchical VampPrior VAE

It counteracts inactive stochastic 
hidden units problem!

Typical issue in hierarchical VAE: inactive stochastic units

u
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Toy problem (MNIST): VAE with dim(z)=2

Standard deviations of the encoder for given pseudoinputs:

K=10 K=100 K=500
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