VAE with a VampPrior

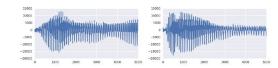
Jakub Tomczak, Max Welling AISTATS 2018

Artificial Intelligence

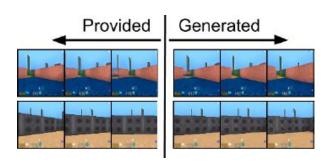
" i want to talk to you . "
"i want to be with you . "
"i do n't want to be with you . "
i do n't want to be with you .
she did n't want to be with him .

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

Text analysis



Audio analysis



Reinforcement Learning

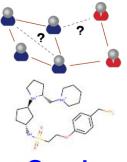
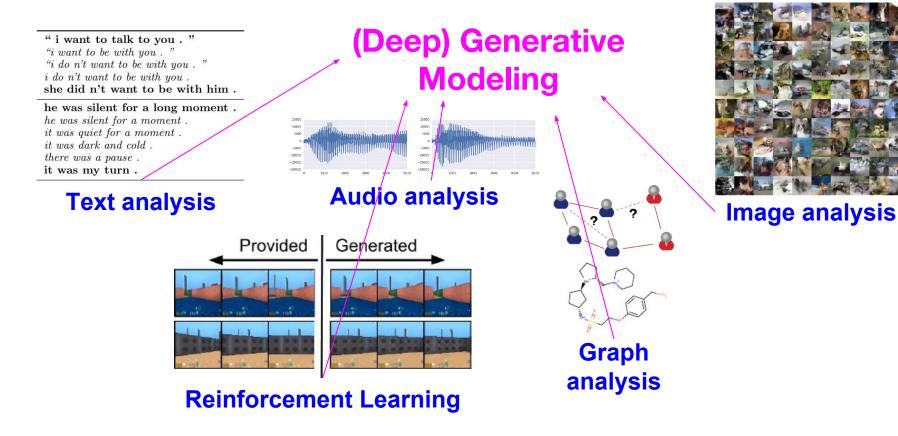
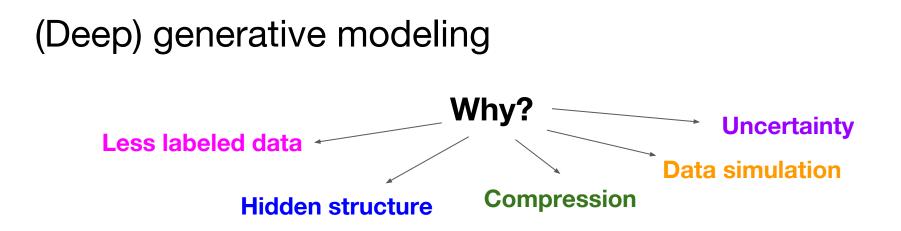


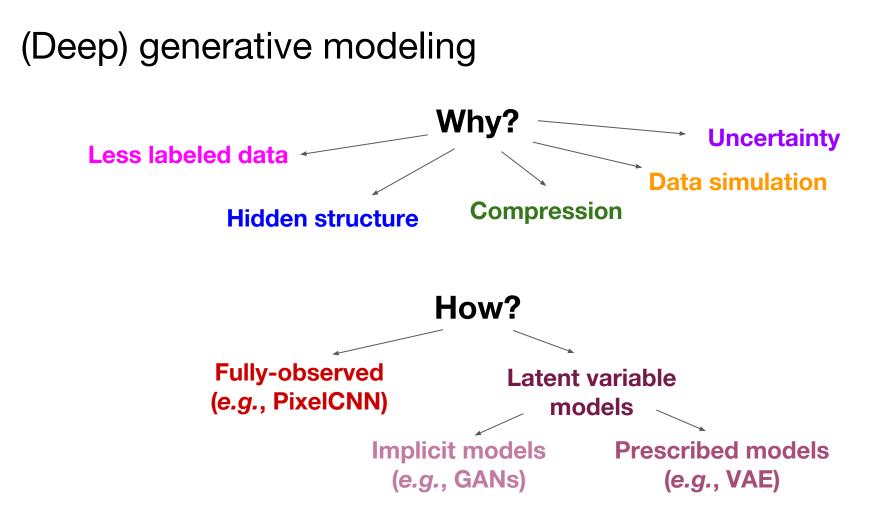
Image analysis

and more ...

Artificial Intelligence







$$\log p(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$
$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$
$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \ \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ d\mathbf{z}$$
$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\lambda}(\mathbf{z})]$$

$$\log p(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z} \qquad \text{Variational posterior}$$
$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$
$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \ \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ d\mathbf{z}$$
$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\lambda}(\mathbf{z})]$$

$$\log p(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$

$$= \underbrace{\log} \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$
Jensen's inequality
$$\stackrel{\geq}{=} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \underbrace{\log} \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ d\mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\lambda}(\mathbf{z})]$$

$$\log p(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$
$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$
$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \ \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ d\mathbf{z}$$
$$= \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]}_{\mathsf{Reconstruction error}} - \underbrace{\mathrm{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\lambda}(\mathbf{z})]}_{\mathsf{Regularization}}$$

$$\log p(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z} \qquad \text{encoder}$$

$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z} \qquad \text{encoder}$$

$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \ \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ d\mathbf{z} \qquad \text{prior}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}}(\mathbf{z}|\mathbf{x}) \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - \mathrm{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})] \ p_{\lambda}(\mathbf{z})$$

$$\log p(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$

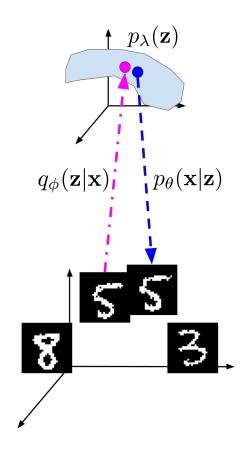
$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \ d\mathbf{z}$$

$$= \int q_{\phi}(\mathbf{z}|\mathbf{x}) \ \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \ d\mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})] p_{\lambda}(\mathbf{z})$$
+ reparameterization trick
= Variational Auto-Encoder

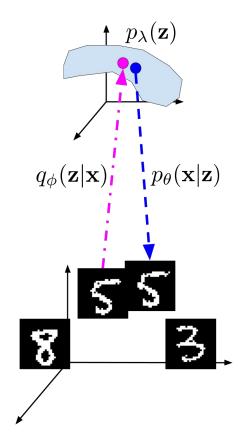
Variational Auto-Encoder

$q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$



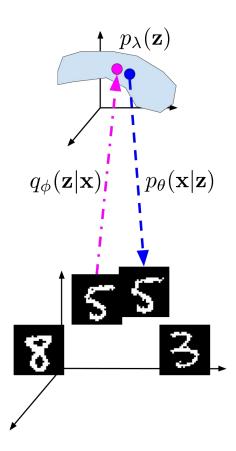
Variational Auto-Encoder

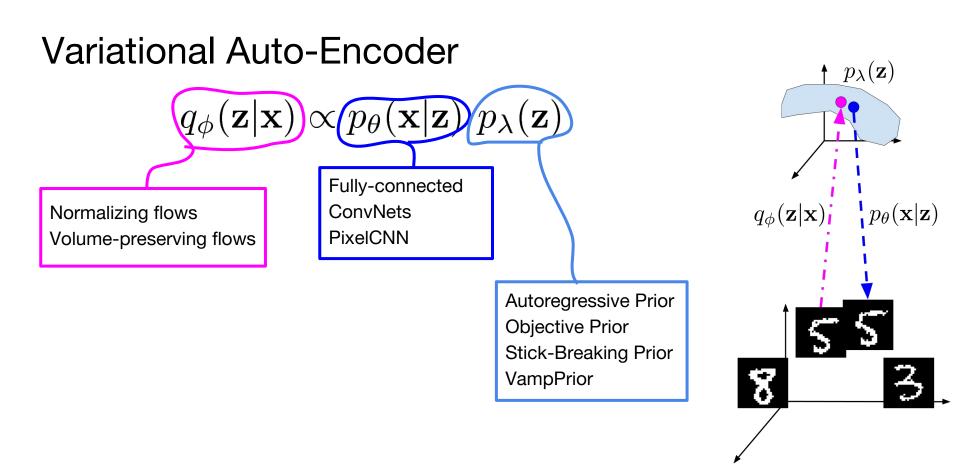
 $p_{\theta}(\mathbf{x}|\mathbf{z}) p_{\lambda}(\mathbf{z})$ $q_{\phi}(\mathbf{z}|\mathbf{x})$ **Fully-connected** ConvNets **PixelCNN**

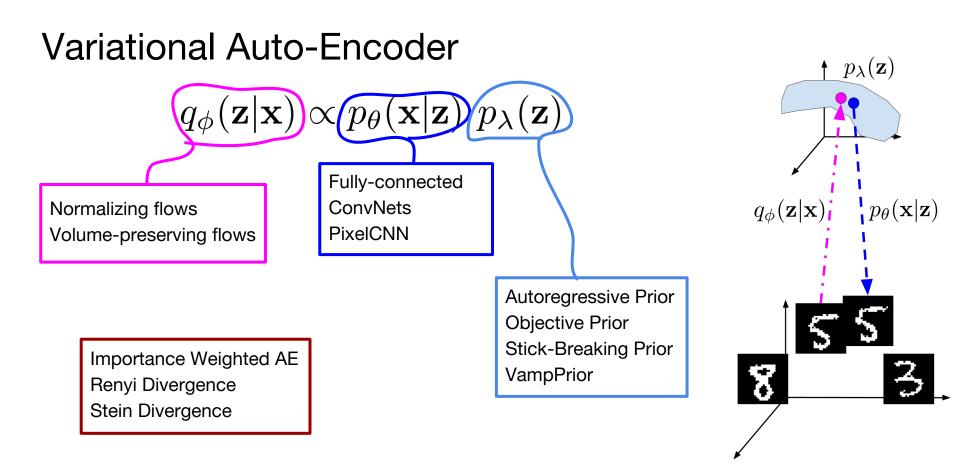


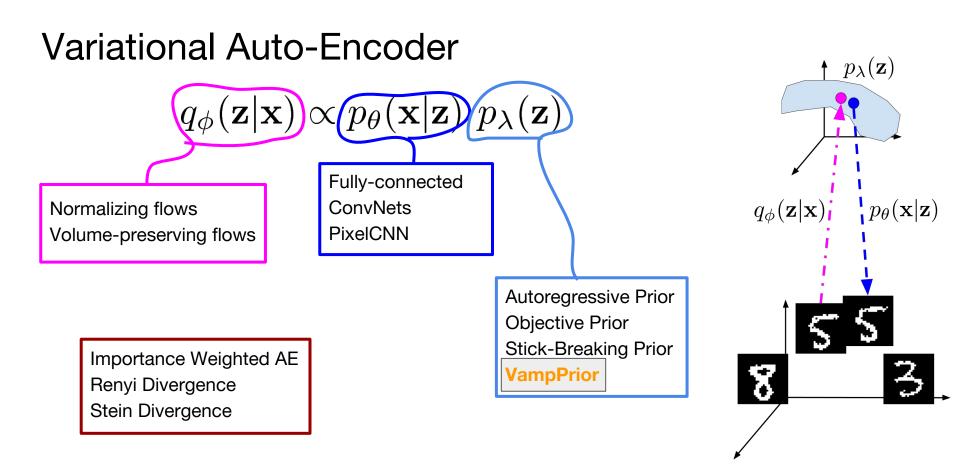
Variational Auto-Encoder

 $\begin{array}{c} q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) p_{\lambda}(\mathbf{z}) \\ \\ \text{Normalizing flows} \\ \text{Volume-preserving flows} \end{array} \qquad \begin{array}{c} \text{Fully-connected} \\ \text{ConvNets} \\ \text{PixelCNN} \end{array}$









• Let's re-write the ELBO:

$$\mathbb{E}_{\mathbf{x}\sim q(\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \geq \mathbb{E}_{\mathbf{x}\sim q(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \right] + \mathbb{E}_{\mathbf{x}\sim q(\mathbf{x})} \left[\mathbb{H}[q_{\phi}(\mathbf{z}|\mathbf{x})] \right] + \mathbb{E}_{\mathbf{x}\sim q(\mathbf{z})} \left[-\ln p_{\lambda}(\mathbf{z}) \right]$$

• Let's re-write the ELBO:

$$\begin{split} \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \geq \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \right] + \\ + \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{H}[q_{\phi}(\mathbf{z}|\mathbf{x})] \right] + \\ \\ \mathsf{Empirical distribution} - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[-\ln p_{\lambda}(\mathbf{z}) \right] \end{split}$$

• Let's re-write the ELBO:

 $\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \underbrace{\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \right]}_{+ \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{H} \left[q_{\phi}(\mathbf{z}|\mathbf{x}) \right] \right]_{+} \\ - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[- \ln p_{\lambda}(\mathbf{z}) \right]}$

• Let's re-write the ELBO:

$$\begin{split} \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \geq & \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \right] + \\ & \left(+ \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{H}[q_{\phi}(\mathbf{z}|\mathbf{x})] \right] + \right] \\ & - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} [-\ln p_{\lambda}(\mathbf{z})] \end{split}$$
Encoder's entropy

• Let's re-write the ELBO:

$$\begin{split} \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \geq & \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \right] + \\ & + \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{H}[q_{\phi}(\mathbf{z}|\mathbf{x})] \right] + \\ & \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[-\ln p_{\lambda}(\mathbf{z}) \right] \end{split}$$
Cross Entropy

• Let's re-write the ELBO:

$$\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \geq \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \right] + \\ + \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{H}[q_{\phi}(\mathbf{z}|\mathbf{x})] \right] + \\ - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[-\ln p_{\lambda}(\mathbf{z}) \right]$$

Aggregated posterior

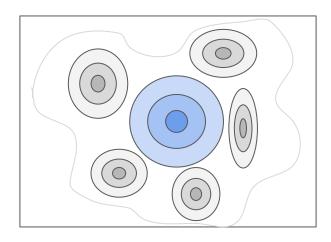
$$q(\mathbf{z}) = \mathbb{E}_{q(\mathbf{x})}[q_{\phi}(\mathbf{z}|\mathbf{x})]$$
$$= \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(\mathbf{z}|\mathbf{x}_n)$$

• Let's re-write the ELBO:

max.
$$\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \geq \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \right] + \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[\mathbb{H}[q_{\phi}(\mathbf{z}|\mathbf{x})] \right] + \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[-\ln p_{\lambda}(\mathbf{z}) \right]$$

min. $\mathbb{H}[q(\mathbf{z})] + KL[q(\mathbf{z})||p_{\lambda}(\mathbf{z})]$

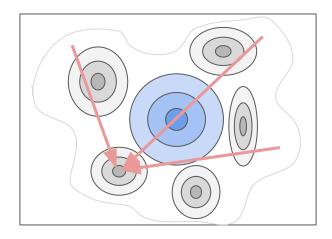
min. $\mathbb{H}[q(\mathbf{z})] + KL[q(\mathbf{z})||p_{\lambda}(\mathbf{z})]$



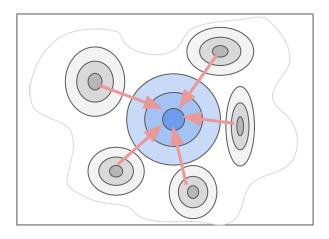
Prior

Aggregated posterior

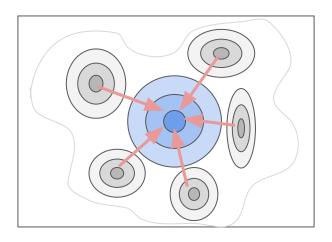
 $\min\left(\mathbb{H}[q(\mathbf{z})] + KL[q(\mathbf{z})||p_{\lambda}(\mathbf{z})]\right)$



min. $\mathbb{H}[q(\mathbf{z})] + KL[q(\mathbf{z})||p_{\lambda}(\mathbf{z})]$

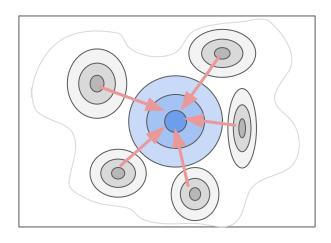


min. $\mathbb{H}[q(\mathbf{z})] + KL[q(\mathbf{z})||p_{\lambda}(\mathbf{z})]$



Standard prior is too strong and overregularizes the encoder.

min. $\mathbb{H}[q(\mathbf{z})] + KL[q(\mathbf{z})||p_{\lambda}(\mathbf{z})]$



Standard prior is too strong and overregularizes the encoder.

What is the "optimal" prior?

• We look for **the optimal prior** using the Lagrange function:

$$\max_{p_{\lambda}(\mathbf{z})} - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} [-\ln p_{\lambda}(\mathbf{z})] + \beta \Big(\int p_{\lambda}(\mathbf{z}) d\mathbf{z} - 1\Big)$$

- The solution is simply **the aggregated posterior**.
- We approximate it using K pseudo-inputs instead of N observations:

$$p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z} | \mathbf{u}_k)$$

• We look for **the optimal prior** using the Lagrange function:

$$\max_{p_{\lambda}(\mathbf{z})} - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} [-\ln p_{\lambda}(\mathbf{z})] + \beta \Big(\int p_{\lambda}(\mathbf{z}) d\mathbf{z} - 1\Big)$$

• The solution is simply the aggregated posterior.

$$p_{\lambda}^{*}(\mathbf{z}) = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(\mathbf{z} | \mathbf{x}_{n})$$

We approximate it using K pseudo-inputs instead of N observations:

$$p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z} | \mathbf{u}_k)$$

• We look for the optimal prior using the Lagrange function:

$$\max_{p_{\lambda}(\mathbf{z})} - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} [-\ln p_{\lambda}(\mathbf{z})] + \beta \Big(\int p_{\lambda}(\mathbf{z}) d\mathbf{z} - 1\Big)$$

• The solution is simply the aggregated posterior.

$$p_{\lambda}^{*}(\mathbf{z}) = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(\mathbf{z} | \mathbf{x}_{n})$$

We approximate it using K pseudo-inputs instead of N observations:

infeasible

$$p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z} | \mathbf{u}_k)$$

• We look for the optimal prior using the Lagrange function:

$$\max_{p_{\lambda}(\mathbf{z})} - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} [-\ln p_{\lambda}(\mathbf{z})] + \beta \Big(\int p_{\lambda}(\mathbf{z}) d\mathbf{z} - 1\Big)$$

- The solution is simply the aggregated posterior.
- We approximate it using *K* pseudo-inputs instead of *N* observations:

$$p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z} | \mathbf{u}_k)$$

• We look for **the optimal prior** using the Lagrange function:

$$\max_{p_{\lambda}(\mathbf{z})} - \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[-\ln p_{\lambda}(\mathbf{z}) \right] + \beta \left(\int p_{\lambda}(\mathbf{z}) d\mathbf{z} - 1 \right)$$

- The solution is simply the aggregated posterior.
- We approximate it using *K* pseudo-inputs instead of *N* observations:

$$p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z} | \mathbf{u}_{k})$$

they are trained from scratch by SGD

- Is the VampPrior different than the Mixture of Gaussians? $p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{N}(\mu_k, \operatorname{diag}(\sigma_k^2))$
- VampPrior: the prior and the posterior must "cooperate" during training.

VampPrior

$$\begin{split} &\frac{1}{K}\sum_{k=1}^{K} \Big\{ \left(\frac{q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \ \frac{\partial}{\partial \phi_{i}}q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) - q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) \ \frac{\partial}{\partial \phi_{i}}q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x})}{\frac{1}{K}\sum_{k=1}^{K} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) \ q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x})} \right) + \\ &+ \Big(\frac{\left(q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \ \frac{\partial}{\partial \mathbf{z}_{\phi}}q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) - q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) \ \frac{\partial}{\partial \mathbf{z}_{\phi}}q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \right) \ \frac{\partial}{\partial \phi_{i}}\mathbf{z}_{\phi}^{(l)}}{\frac{1}{K}\sum_{k=1}^{K} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) \ q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x})} \end{split} \Big) \Big\} \end{split}$$

standard/ MoG

$$\frac{1}{p_{\lambda}(\mathbf{z}_{\phi}^{(l)}) \ q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x})} \Big(q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \frac{\partial}{\partial \mathbf{z}_{\phi}} p_{\lambda}(\mathbf{z}_{\phi}^{(l)}) - p_{\lambda}(\mathbf{z}_{\phi}^{(l)}) \frac{\partial}{\partial \mathbf{z}_{\phi}} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \Big) \frac{\partial}{\partial \phi_{i}} \mathbf{z}_{\phi}^{(l)}$$

- Is the VampPrior different than the Mixture of Gaussians? $p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{N}(\mu_k, \operatorname{diag}(\sigma_k^2))$
- VampPrior: the prior and the posterior must "cooperate" during training.

VampPrior

$$\frac{1}{K} \sum_{k=1}^{K} \left\{ \left(\frac{q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \frac{\partial}{\partial \phi_{i}} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) - q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) \frac{\partial}{\partial \phi_{i}} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x})}{\frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x})} \right) + \left(\frac{\left(q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \frac{\partial}{\partial \mathbf{z}_{\phi}} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) - q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) \frac{\partial}{\partial \mathbf{z}_{\phi}} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \right) \frac{\partial}{\partial \phi_{i}} \mathbf{z}_{\phi}^{(l)}}{\frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{u}_{k}) q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x})} \right) \right\}$$

standard/ MoG

$$\frac{1}{p_{\lambda}(\mathbf{z}_{\phi}^{(l)}) \ q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x})} \Big(q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \frac{\partial}{\partial \mathbf{z}_{\phi}} p_{\lambda}(\mathbf{z}_{\phi}^{(l)}) - p_{\lambda}(\mathbf{z}_{\phi}^{(l)}) \frac{\partial}{\partial \mathbf{z}_{\phi}} q_{\phi}(\mathbf{z}_{\phi}^{(l)}|\mathbf{x}) \Big) \frac{\partial}{\partial \phi_{i}} \mathbf{z}_{\phi}^{(l)}$$

- VampPrior is closely related to the **Empirical Bayes**.
 - We propose a new approach that learns parameters of the prior and combines the variational

inference with the EB approach.

- VampPrior is closely related to the **Information Bottleneck**.
 - The aggregated posterior naturally plays the role of the prior.
 - The VampPrior brings the VAE and the IB formulations together.

- Is it advantageous to take *K*=*N*?
 - Not necessarily...
 - Let's re-write (one more time) the ELBO:

maximize $\mathbb{E}_{q(\mathbf{x})}[\ln p(\mathbf{x}|\mathbf{z})] - \mathbf{I}(\mathbf{x};\mathbf{z}) - \mathrm{KL}[q(\mathbf{z})||p(\mathbf{z})]$

• We will see this effect also during experiments.

- Is it advantageous to take *K*=*N*?
 - Not necessarily...
 - Let's re-write (one more time) the ELBO:

maximize
$$\mathbb{E}_{q(\mathbf{x})}[\ln p(\mathbf{x}|\mathbf{z})] - \mathbf{I}(\mathbf{x};\mathbf{z}) - \underbrace{\mathrm{KL}[q(\mathbf{z})||p(\mathbf{z})]}_{\approx 0 \text{ for } p(\mathbf{z}) \approx q(\mathbf{z})}$$

• We will see this effect also during experiments.

- Is it advantageous to take *K*=*N*?
 - Not necessarily...
 - Let's re-write (one more time) the ELBO:

maximize
$$\mathbb{E}_{q(\mathbf{x})}[\ln p(\mathbf{x}|\mathbf{z})] - \mathbf{I}(\mathbf{x};\mathbf{z}) - \mathbf{KL}[q(\mathbf{z})||p(\mathbf{z})]$$

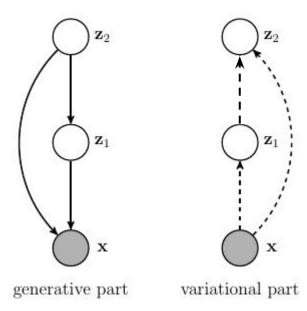
 $\Rightarrow \mathbf{x} \text{ independent of } \mathbf{z} \mathbf{I} \qquad \approx 0 \text{ for } p(\mathbf{z}) \approx q(\mathbf{z})$

• We will see this effect also during experiments.

Hierarchical VampPrior VAE

Typical issue in hierarchical VAE: inactive stochastic units

 $p(\mathbf{z}_2) = \frac{1}{K} \sum_{k=1}^{K} q_{\psi}(\mathbf{z}_2 | \mathbf{u}_k),$ $p_{\lambda}(\mathbf{z}_1 | \mathbf{z}_2) = \mathcal{N}(\mathbf{z}_1 | \mu_{\lambda}(\mathbf{z}_2), \operatorname{diag}(\sigma_{\lambda}^2(\mathbf{z}_2))),$ $q_{\phi}(\mathbf{z}_1 | \mathbf{x}, \mathbf{z}_2) = \mathcal{N}(\mathbf{z}_1 | \mu_{\phi}(\mathbf{x}, \mathbf{z}_2), \operatorname{diag}(\sigma_{\phi}^2(\mathbf{x}, \mathbf{z}_2))))$ $q_{\psi}(\mathbf{z}_2 | \mathbf{x}) = \mathcal{N}(\mathbf{z}_2 | \mu_{\psi}(\mathbf{x}), \operatorname{diag}(\sigma_{\psi}^2(\mathbf{x})))$



Hierarchical VampPrior VAE

Typical issue in hierarchical VAE: inactive stochastic units

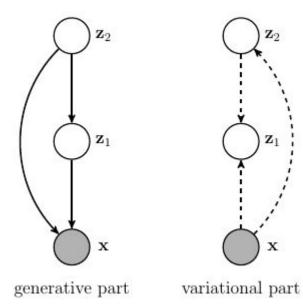
$$p(\mathbf{z}_{2}) = \frac{1}{K} \sum_{k=1}^{K} q_{\psi}(\mathbf{z}_{2} | \mathbf{u}_{k}),$$

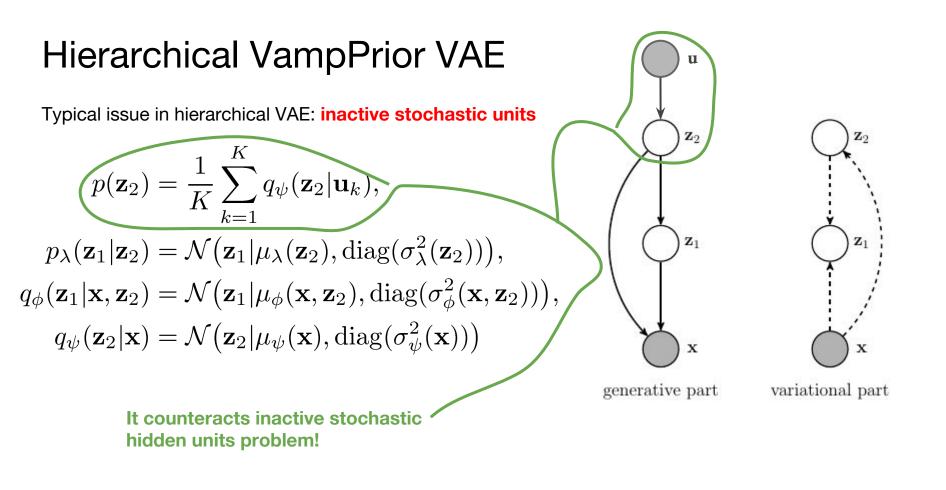
$$p_{\lambda}(\mathbf{z}_{1} | \mathbf{z}_{2}) = \mathcal{N}(\mathbf{z}_{1} | \mu_{\lambda}(\mathbf{z}_{2}), \operatorname{diag}(\sigma_{\lambda}^{2}(\mathbf{z}_{2})))),$$

$$q_{\phi}(\mathbf{z}_{1} | \mathbf{x}, \mathbf{z}_{2}) = \mathcal{N}(\mathbf{z}_{1} | \mu_{\phi}(\mathbf{x}, \mathbf{z}_{2}), \operatorname{diag}(\sigma_{\phi}^{2}(\mathbf{x}, \mathbf{z}_{2})))),$$

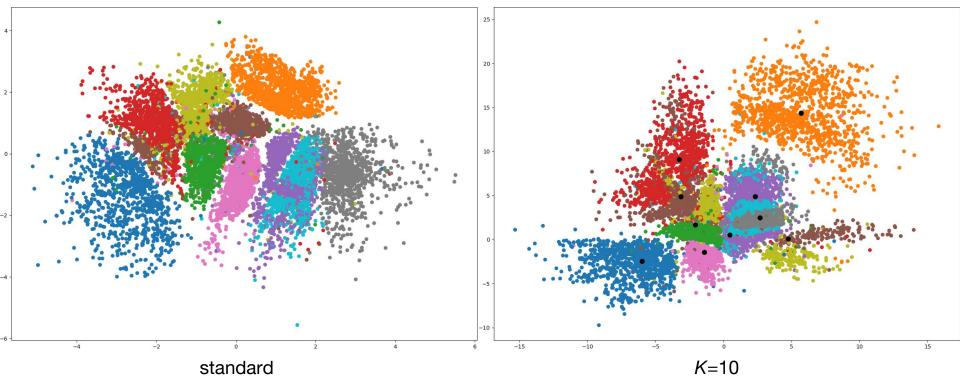
$$q_{\psi}(\mathbf{z}_{2} | \mathbf{x}) = \mathcal{N}(\mathbf{z}_{2} | \mu_{\psi}(\mathbf{x}), \operatorname{diag}(\sigma_{\psi}^{2}(\mathbf{x})))$$

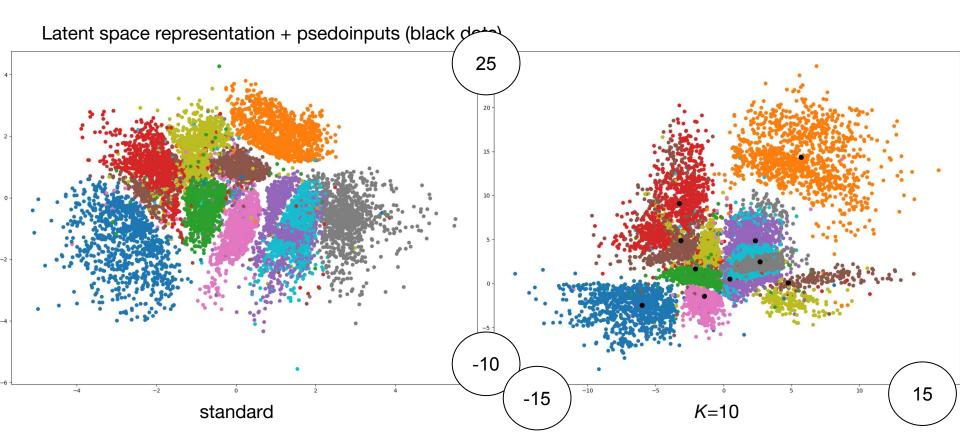
1



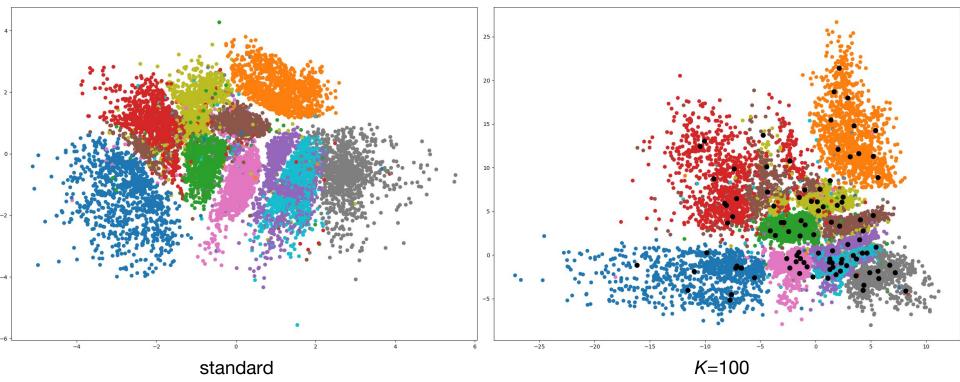


Latent space representation + psedoinputs (black dots)

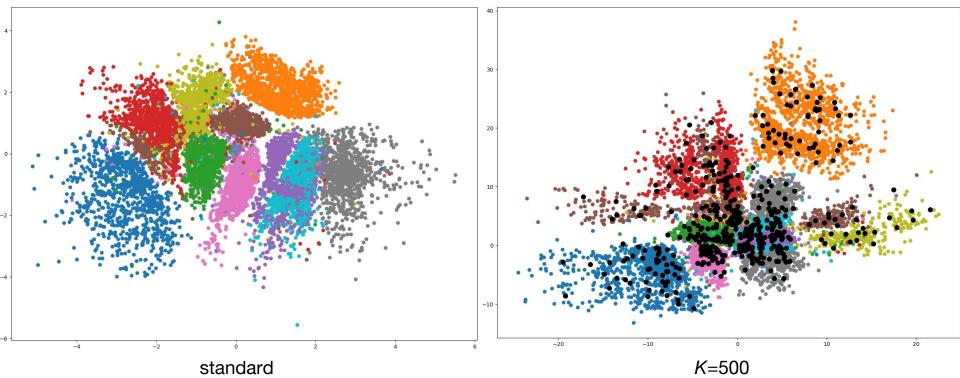




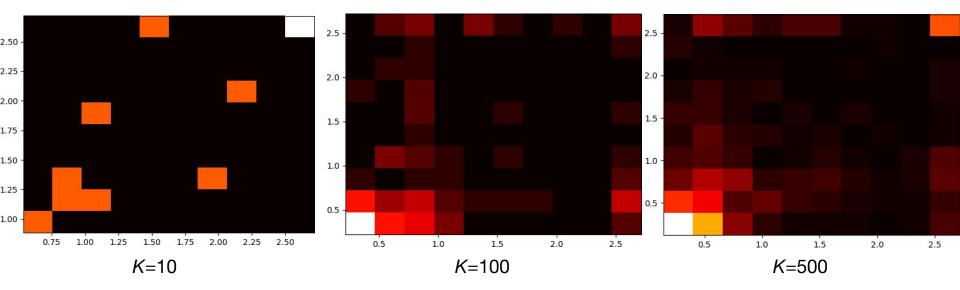
Latent space representation + psedoinputs (black dots)



Latent space representation + psedoinputs (black dots)



Standard deviations of the encoder for given pseudoinputs:



	VAE	(L = 1)	HVAE	(L=2)	CONVHVA	AE $(L=2)$	PIXELHV	AE $(L=2)$
DATASET	$\operatorname{standard}$	VampPrior	standard	VampPrior	$\operatorname{standard}$	VampPrior	$\operatorname{standard}$	VampPrior
$\operatorname{static}\operatorname{MNIST}$	-88.56	-85.57	-86.05	-83.19	-82.41	-81.09	-80.58	-79.78
dynamicMNIST	-84.50	-82.38	-82.42	-81.24	-80.40	-79.75	-79.70	-78.45
Omniglot	-108.50	-104.75	-103.52	-101.18	-97.65	-97.56	-90.11	-89.76
Caltech 101	-123.43	-114.55	-112.08	-108.28	-106.35	-104.22	-85.51	-86.22
Frey Faces	4.63	4.57	4.61	4.51	4.49	4.45	4.43	4.38
Histopathology	6.07	6.04	5.82	5.75	5.59	5.58	4.84	4.82

Table 2: Test LL for static MNIST.

Model	LL
VAE $(L = 1) + NF$ 32	-85.10
VAE $(L = 2)$ 6	-87.86
IWAE $(L=2)$ 6	-85.32
$\mathrm{HVAE}\ (L=2)\ +\ \mathrm{SG}$	-85.89
$\mathrm{HVAE}\ (L=2)\ +\ \mathrm{MoG}$	-85.07
HVAE $(L = 2)$ + VAMPPRIOR data	-85.71
HVAE $(L = 2)$ + VAMPPRIOR	-83.19
AVB + AC (L = 1) 28	-80.20
VLAE 7	-79.03
VAE + IAF 18	-79.88
CONVHVAE $(L = 2)$ + VAMPPRIOR	-81.09
PixelHVAE $(L = 2)$ + VampPrior	-79.78

Table 3: Test LL for dynamic MNIST.

Model	$\mathbf{L}\mathbf{L}$
VAE $(L = 2) + VGP$ 40	-81.32
CAGEM-0 $(L = 2)$ 25	-81.60
LVAE $(L = 5)$ 36	-81.74
HVAE $(L=2)$ + VAMPPRIOR data	-81.71
HVAE $(L = 2)$ + VampPrior	-81.24
VLAE 7	-78.53
VAE + IAF 18	-79.10
PixelVAE 15	-78.96
CONVHVAE $(L = 2)$ + VAMPPRIOR	-79.78
PixelHVAE $(L = 2)$ + VampPrior	-78.45

Table 4: Test LL for OMNIGLOT.

Model	$\mathbf{L}\mathbf{L}$
VR-MAX $(L = 2)$ 24	-103.72
IWAE $(L=2)$ 6	-103.38
LVAE $(L = 5)$ 36	-102.11
HVAE $(L = 2)$ + VAMPPRIOR	-101.18
VLAE 7	-89.83
CONVHVAE $(L = 2)$ + VAMPPRIOR	-97.56
PixelHVAE $(L = 2)$ + VampPrior	-89.76

Table 5: Test LL for Caltech 101 Silhouettes.

Model	LL
IWAE $(L = 1)$ 24	-117.21
VR-max $(L = 1)$ 24	-117.10
HVAE $(L = 2)$ + VampPrior	-108.28
VLAE 7	-78.53
CONVHVAE $(L = 2)$ + VampPrior	-104.22
PixelHVAE $(L = 2) + VAMPPRIOR$	-86.22

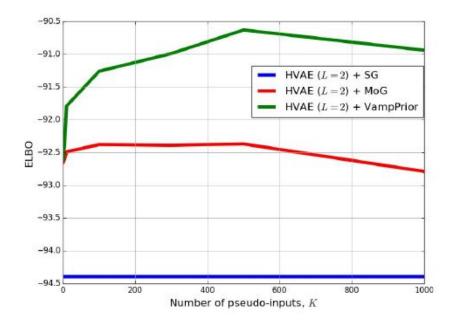


Figure 2: A comparison between the HVAE (L = 2) with SG prior, MoG prior and VampPrior in terms of ELBO and varying number of pseudo-inputs/components on static MNIST.

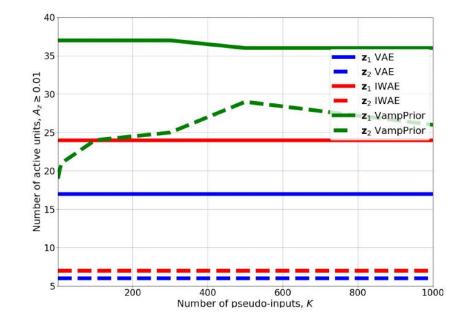


Figure 3: A comparison between two-level VAE and IWAE with the standard normal prior and theirs Vamp-Prior counterpart in terms of number of active units for varying number of pseudo-inputs on static MNIST.

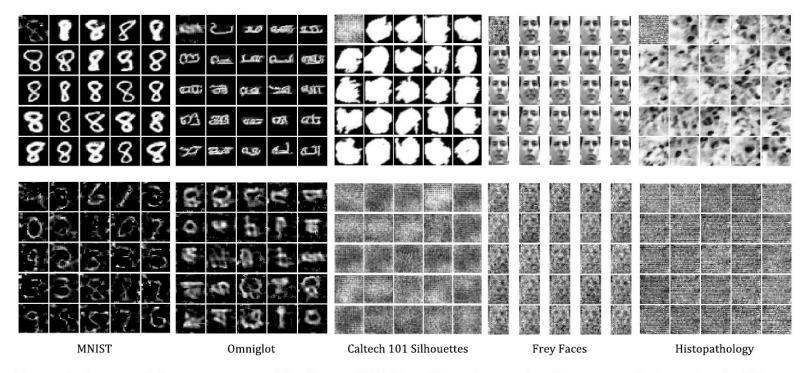


Figure 4: $(top \ row)$ Images generated by PIXELHVAE + VAMPPRIOR for chosen pseudo-input in the left top corner. $(bottom \ row)$ Images represent a subset of trained pseudo-inputs for different datasets.

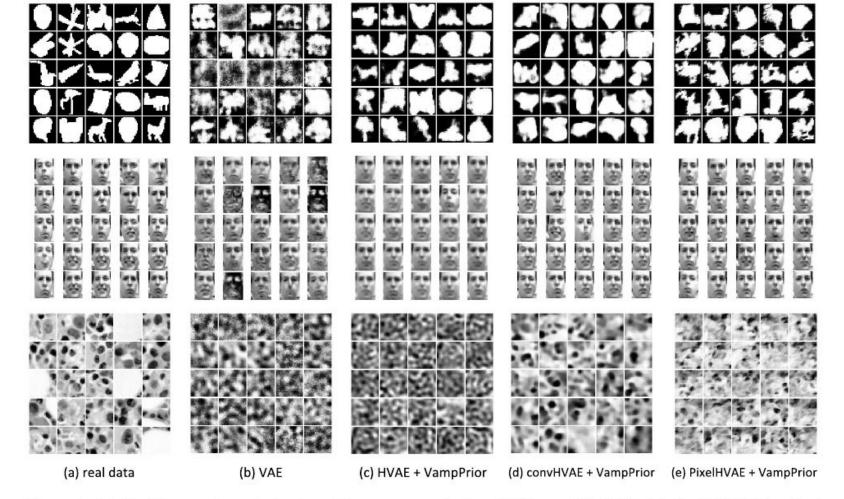


Figure 5: (a) Real images from test sets and images generated by (b) the vanilla VAE, (c) the HVAE (L = 2) + VampPrior, (d) the convHVAE (L = 2) + VampPrior and (e) the PixelHVAE (L = 2) + VampPrior.

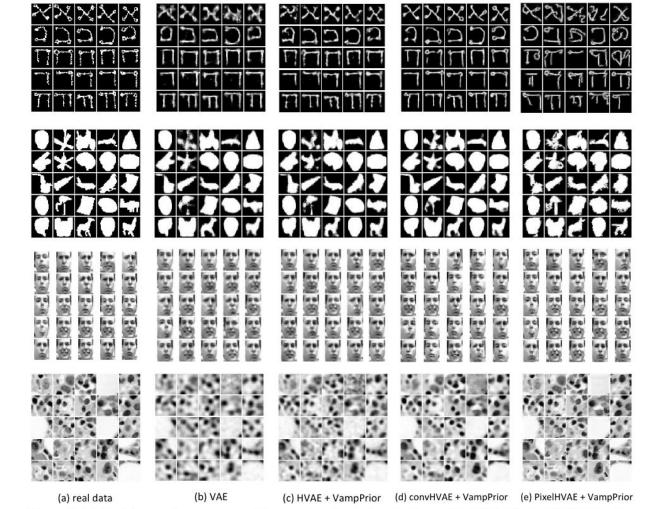


Figure 6: (a) Real images from test sets, (b) reconstructions given by the vanilla VAE, (c) the HVAE (L = 2) + VampPrior, (d) the convHVAE (L = 2) + VampPrior and (e) the PixelHVAE (L = 2) + VampPrior.

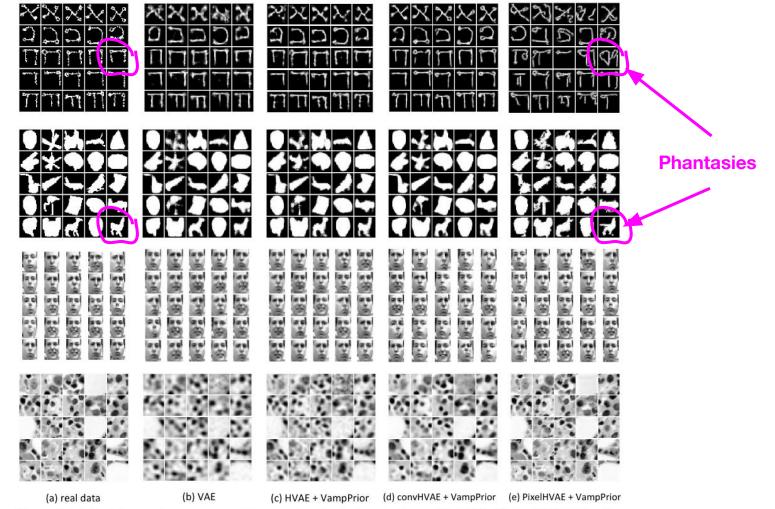


Figure 6: (a) Real images from test sets, (b) reconstructions given by the vanilla VAE, (c) the HVAE (L = 2) + VampPrior, (d) the convHVAE (L = 2) + VampPrior and (e) the PixelHVAE (L = 2) + VampPrior.

The prior in VAE is extremely important.	

The **prior** in VAE is extremely important.

VampPrior = approximated aggregated posterior as the optimal prior

Hierarchical VampPrior VAE → **less** inactive stochastic units.

Multimodal prior \rightarrow **better** generative process

The **prior** in VAE is extremely important.

VampPrior = approximated aggregated posterior as the optimal prior

Hierarchical VampPrior VAE \rightarrow less inactive stochastic units.

Multimodal prior \rightarrow **better** generative process

The **prior** in VAE is extremely important.

VampPrior = approximated aggregated posterior as the optimal prior

Hierarchical VampPrior VAE \rightarrow less inactive stochastic units.

Multimodal prior \rightarrow **better** generative process

Webpage: https://jmtomczak.github.io/

Code on github: https://github.com/jmtomczak/

Contact: jakubmkt@gmail.com

Marie Skłodowska-Curie Actions

The research conducted by Jakub M. Tomczak was funded by the European Commission within the Marie Skłodowska-Curie Individual Fellowship (Grant No. 702666, "Deep learning and Bayesian inference for medical imaging").