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How to understand the phenomenon?
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How to understand the phenomenon?
Model and identify the whole network at once

4 g | - EokcarS|. b = EokcarS
e EpkearS < o Ky +5 (> Ky +5
vwvate @ Y T Ku + S o A '._ Q
| M o 2 Cm— = EokcarS
Glucose <yyc \ ¢ T = © Ky +S
w’ & o AP Glucose 8-phosphate w QX
I Vg .
y O - Fructose 6-phosphate %% @&
R ?>|L & o e
hoenolpyruvate %o . ' :
: e v*q ol
r,lcevale‘ = ar e . B
L = EykcatS ge \ o Fructose 1.6 m;,-‘:y-.m..xl(-u‘. fv'
1 ky+s ~a P T
S WSS EgkeqrS ;;l-,-;emle\":u - Glyceraldehyde 3~phcsp%
@ oo M >3\A W <t W v oS
o PO, b e e LA m -—> .
W pmm e P EgkearS oot e -
e e v = Ky + S oglycerate .=
M — L Eokcats
_ EgkcarS Ky +S
i S Output

Input Biochemical pro
(nutrients) (enzymes + products) (living cells)

VU¥

18



EXAMPLE: GLYCOLYSIS

How to understand the phenomenon?
Model and identify the whole network at once

®_p o |, _ EokearS}
EgkearS e Ky +5|v
b = o o )
Ky +5 o "o Lo , = EokearS
Glucose 344 \ B 2, - Ky +S
AP Gl X

Glucose 6-phosphate w @ ¥

_ EokcarS
Ky +S

w’ A @
Fructose 6-phosphate %% @&

W Y v
) 9
o e ?>‘ " y Y pur i :
hoenolpyruvate 0 . o o)
- e A I
* o x
ADP o W

Fructose 1,8-biphosphate 5%
o Q

EgkeqrS ™ ~ =
| " Ku+s ~ g v
DT — b = EykearS 9"!’“"“”::“ . on-,-:mjdch:dc 3~phcsp%
) e s o i) e ‘?W\A e P WG trougpsn e O

- iy energ b
‘: g fnvrsible o E()kcats & ond et !
v = KM TS oglycerate .- e phosphate
] EokcarS

_ EgkcarS =
- Ky + S

Output
(living cells)

Biochemical pro S
(enzymes + products)

Input
(nutrients)

We know the mathematical description and want to identify the VU 4{
parameters of the network with limited measurements.

19



EXAMPLE: GLYCOLYSIS

How to understand the phenomenon?

A 2
vl‘é:ﬁz‘—}:;”m e ?T"“:G:c_;aﬂlph te
Phosphoenolpyruvate ﬁ?}{% . sp"m ‘ ‘\, :7;;”";‘“ B £

2-phosphoghyce! WA \ . Fructose :sum m%

Legend \I %; V - o
...:,w }i}é{’l\i“’..“m 3-phosphoglycerate ay ajdehyde31:hvs
Input Biochemical processes Output
(nutrients) (enzymes + products) (living cells)

. VUf¥



EXAMPLE: GLYCOLYSIS

How to understand the phenomenon?
We don’t know the “inside” and treat is as a black-box.
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EXAMPLE: GLYCOLYSIS

How to understand the phenomenon?
We don’t know the “inside” and treat is as a black-box.

By learning the input-output dependency, we can understand be
2 (to some degree) the phenomenon or use the model to study it. VU LS



ENZYME KINETICS: INTRODUCTION

Enzyme kinetics: how the chemical reactions are catalyzed by enzymes.

Goal: Find the reaction rate (i.e., the speed at which a chemical reaction
takes place) of a single reaction.

Why?

- Understanding the catalytic mechanism of an enzyme.

- Understanding the role of an enzyme in a chemical reaction.

- Understanding how an enzyme activity is controlled.

- Understanding how a drug (inhibitor) slows down the reaction.

, VUf¥



ENZYME KINETICS: MICHAELIS-MENTEN MODEL

The commonly used model in enzyme kinetics is the Michaelis-Menten
model.

We consider a reversible reaction where an enzyme (E) binds to a
substrate (S) to form a complex (ES) to irreversibly release a product (P)
and free the enzyme:

k
E+S = ES % E 4P
k

r
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ENZYME KINETICS: MICHAELIS-MENTEN MODEL

The commonly used model in enzyme kinetics is the Michaelis-Menten
model.

We consider a reversible reaction where an enzyme (E) binds to a

substrate (S) to form a complex (ES) to irreversibly release a product (P)
and free the enzyme:

YE+ P

~ Kinetic parameters



ENZYME KINETICS: MICHAELIS-MENTEN MODEL

We consider a reversible reaction where an enzyme (E) binds to a
substrate (S) to form a complex (ES) to irreversibly release a product (P)
and free the enzyme.

Considering the system in a quasi-steady-state, we get:

PV, S  Ek.,S

cat
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We consider a reversible reaction where an enzyme (E) binds to a
substrate (S) to form a complex (ES) to irreversibly release a product (P)
and free the enzyme.

Considering the system in a quasi-steady-state, we get:
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We consider a reversible reaction where an enzyme (E) binds to a
substrate (S) to form a complex (ES) to irreversibly release a product (P)
and free the enzyme.

Considering the system in a quasi-steady-state, we get:
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ENZYME KINETICS: MICHAELIS-MENTEN MODEL

We consider a reversible reaction where an enzyme (E) binds to a
substrate (S) to form a complex (ES) to irreversibly release a product (P)
and free the enzyme.

Considering the system in a quasi-steady-state, we get:

PV, S  Ek.S

cat
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T At Ky+S Ky+S

Solution:

V= Vmax(l — exp(—bS))
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How to find the kinetic parameter values? The standard approach.
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How to find the kinetic parameter values? The standard approach.
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ENZYME KINETICS: MICHAELIS-MENTEN MODEL

How to find the kinetic parameter values? The standard approach.

Measurements at different

substrate concentrations Michaelis-Menten plot
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How to find the kinetic parameter values? Our approach: ABC.
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ENZYME KINETICS: MICHAELIS-MENTEN MODEL

How to find the kinetic parameter values? Our approach: ABC.

Our main motivation: Use (cheap) computations instead
of laborious and costly work in a lab.

Proposition: Use Approximate Bayesian Computation.

y VU



ENZYME KINETICS: MICHAELIS-MENTEN MODEL

How to find the kinetic parameter values? Our approach: ABC.

1. Initialize 6, := 6,.

2. Forte {0,1,....,T—1}:
(i) (Generate) Sample &' ~ ¢(0]6,).
(ii) (Evaluate) Calculate the distance:

A©) = llx = O

(iii) (Select)
If A(@) < ¢ thend, =
Elsed_, := 0.
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ENZYME KINETICS: MICHAELIS-MENTEN MODEL

How to find the kinetic parameter values? Our approach: ABC.

1. Initialize 6, := 6,.

2. Forte {0,1,....,T—1}:
(i) (Generate) Sample &' ~ ¢(0]6,).
(ii) (Evaluate) Calculate the distance:

simulator (the MM model)

(iii) (Select)
If A(@) < ¢ thend, =
Elsed_, := 0.
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ENZYME KINETICS: MICHAELIS-MENTEN MODEL

How to find the kinetic parameter values? Our approach: ABC.

Measurements at one

substrate concentration Sample from the prior
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37 Tomczak, J. M., & Weglarz -Tomczak, E. (2019). Estimating kinetic constants in the Michaelis—Menten model from VU k
one enzymatlc assay using Approximate Bayesian Computation. FEBS letters, 593(19), 2742-2750.



ENZYME KINETICS: MICHAELIS-MENTEN MODEL

How to find the kinetic parameter values? Our approach: ABC.
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ENZYME KINETICS: THREE AMINOPEPTIDASES

human aminopeptidase (hAPN), Sus scrofa APN (ssAPN) and human
endoplasmic reticulum aminopeptidase 2 (hERAP2)

H standard approach
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ENZYME KINETICS: SARS-COV-1 & SARS-COV-2

In our recent study, we presented:
- An analysis of the active site of PLpro (enzyme)
in SARS-CoV-1 (SARS) and SARS-CoV-2 (CoV?2).

- A kinetic analysis of the Ub-AMC hydrolysis by
PLpro from SARS and CoV2

- Ebselen and structural analogues of ebselen
as potent covalent inhibitors of PLproCoV?2

40 Weglarz-Tomczak, E. et al. (2021). Identification of ebselen and its analogues as potent covalent inhibitors of VU k
papain-like protease from SARS-CoV-2. Scientific reports, 11(1), 1-10.



ENZYME KINETICS: SARS-COV-1 & SARS-COV-2

In our recent study, we presented:
- An analysis of the active site of PLpro (enzyme)
in SARS-CoV-1 (SARS) and SARS-CoV-2 (CoV?2).

- A kinetic analysis of the Ub-AMC hydrolysis by
PLpro from SARS and CoV2

- Ebselen and structural analogues of ebselen
as potent covalent inhibitors of PLproCoV?2

41 Weglarz-Tomczak, E. et al. (2021). Identification of ebselen and its analogues as potent covalent inhibitors of VU k
papain-like protease from SARS-CoV-2. Scientific reports, 11(1), 1-10.



ENZYME KINETICS: SARS-COV-1 & SARS-COV-2
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ENZYME KINETICS: SARS-COV-1 & SARS-COV-2
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IDENTIFICATION OF WHOLE NETWORKS: GENE REPRESSILATOR MODEL

Let us look at a network of reactions.
First, we focus on the well-known gene repressilator model:
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IDENTIFICATION OF WHOLE NETWORKS: GENE REPRESSILATOR MODEL

Let us look at a network of reactions.
First, we focus on the well-known gene repressilator model:

dm, N a N
—=—-m a

T a) 0’\

dp,
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GOAL: Find parameters [a, o, /, n] by observing only mRNA (m), k
% j.e., gene expression, NOT proteins (p). VU



IDENTIFICATION OF WHOLE NETWORKS: GENE REPRESSILATOR MODEL

What we know:
e We know the model (i.e., ODEs).
e For given parameter values, we can always run a numerical integrator.

e There are four parameters.

; VUf¥
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What we know:
e We know the model (i.e., ODEs).
e For given parameter values, we can always run a numerical integrator.

e There are four parameters.

This problem could be solved using computational methods, namely,
derivative-free optimization (or, as previously presented, ABC).
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IDENTIFICATION OF WHOLE NETWORKS: GENE REPRESSILATOR MODEL

What we know:
e We know the model (i.e., ODEs).

e For given parameter values, we can always run a numerical integrator.
e There are four parameters.

This problem could be solved using computational methods, namely,
derivative-free optimization (or, as previously presented, ABC).

For instance, we can use population-based algorithms.

. VUf¥



IDENTIFICATION OF WHOLE NETWORKS: POPULATION-BASED OPT.

e The key idea: Run an algorithm multiple times in parallel and exchange
information about the objective among solutions.
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IDENTIFICATION OF WHOLE NETWORKS: POPULATION-BASED OPT.

e The key idea: Run an algorithm multiple times in parallel and exchange
information about the objective among solutions.

e The general scheme:
1.(Init) Initialize a population of solutions, &, .= %,,, and evaluate.
2. Repeat until STOP:
(i) (Generate) Generate new solutions, §,,, .
(ii) (Evaluate) Evaluate new solutions.

(iii)(Select) Select &, , from &, and &, .

. VUf¥



IDENTIFICATION OF WHOLE NETWORKS: POPULATION-BASED OPT.

e The key idea: Run an algorithm multiple times in parallel and exchange
information about the objective among solutions.

e The general scheme:
1.(Init) Initialize a population of solutions, &, .= %,,, and evaluate.
2. Repeat until STOP:

(i) (Generate) Generate new solutions, §,,,. Fnew = X171 y(Xy — x3)

(ii) (Evaluate) Evaluate new solutions. differential mutation

(iii)(Select) Select &, , from &, and &, .

Select best performing candidates
from the old population and new points. VU%’
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IDENTIFICATION OF WHOLE NETWORKS: GENE REPRESSILATOR MODEL

AT T L

¥

ool ee
o Peyess

(b) ap vs. n nvs. 3

- the 1st generation
- the 4th generation
- the 8th generation
- the 20th generation

Tomczak, J. M., Weglarz-Tomczak, E., Eiben, A. E. (2020). Differential evolution with reversible linear transformations.VU k

> Genetic and Evolutionary Computation Conference (GECCO) (pp. 205-206).



IDENTIFICATION OF WHOLE NETWORKS: GLYCOLYSIS

Now we are ready to attack the larger problem.

|

We consider the problem glycolysis of the baker’s yeast. OO0
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IDENTIFICATION OF WHOLE NETWORKS: GLYCOLYSIS

Now we are ready to attack the larger problem.

We consider the problem glycolysis of the baker’s yeast.

The whole glycolysis is extremely complex process.

In our studies, we used a simplified model: o
¢ 11 reactions; wO—|
e 9 metabolites; /: .
e 18 kinetic parameters. |

We assume that 5 metabolites are observed. OO0

, VUf¥



IDENTIFICATION OF WHOLE NETWORKS: GLYCOLYSIS

ki1, k12

ko1, k22, k23

Differential Limited data

i k41, K.
equations . 41, K42
q[ Population-based .

Mie e PvSCeS optimization Timecourses Parameter
J Uy |£| Y . values
E.ﬁﬂra Python Simulator for Cellular Systems

INISUINS

Code: https://github.com/imtomczak/popi4sb

56 Weglarz-Tomczak, E., Tomczak, J. M., Eiben, A. E., & Brul, S. (2021). Population-Based Parameter Identification for VU ;”k
Dynamical Models of Biological Networks with an Application to Saccharomyces cerevisiae. Processes, 9(1), 98.


https://github.com/jmtomczak/popi4sb

IDENTIFICATION OF WHOLE NETWORKS: GLYCOLYSIS

Unobserved metabolites
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57 Weglarz-Tomczak, E., Tomczak, J. M., Eiben, A. E., & Brul, S. (2021). Population-Based Parameter Identification for VU k
Dynamical Models of Biological Networks with an Application to Saccharomyces cerevisiae. Processes, 9(1), 98.



(AUTOMATIC) CELL COUNTING: THE CASE OF CANCER CELLS

Input Black box Image +
(nutrients) counts of cells



(AUTOMATIC) CELL COUNTING: THE CASE OF CANCER CELLS

Input Black box Image +
(nutrients) counts of cells
ASSUMPTIONS:

(1) We don’t know how the cancer develops.
(i) We give different nutrients to determine how they influences cancer.

s GOAL: Automatically calculate cells and treat is as a regression task. VU ;if



(AUTOMATIC) CELL COUNTING: THE CASE OF CANCER CELLS

Data:

* 3 human osteosarcoma (U20S) and a human leukemia (HL-60)
e 165 images (133 training, 32 test)
e 700px by 700px

e Collected at the UVA
(led by E.W.-T.)

o Lavitt, F. et al. (2021). Automatic cell counting using a Convolutional Neural Network-based regressor with an VU k
application to microscope images of human cancer cell, (under submission)
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Feature extraction Regressor

egq. e.g. cell
:> SVR. RR, :> Count

- Histogram of Gradients
- Frangi filter XGB, NNR,
GTB
( CNN-based regressor — \
Eéﬁ I :’> :D cell
count
Data \_ CNN (e.g., xResNet) ~ FCN J

A: Machine learning pipeline.  B: Deep learning approach.

VU¥

g Lavitt, F. et al. (2021). Automatic cell counting using a Convolutional Neural Network-based regressor with an
application to microscope images of human cancer cell, (under submission)
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Output Output Output
MaxPool
(3x3), s=2
We used xResNet T
. Cony, Conv,
+ transfer learning. x1 1x1
Conv Conv

T g T 1x1

Conv Conv T Conv
(3x3, s=2) 1x1,s=2 (3x3, s=2) T
A Conv
AvgPool

T S T (2x2, 5=2)
Conv T Conv
(1x1) (1x1)

Conv
T 1x1,s=2 T
|
Input Input Input
ResNet-B ResNet-C ResNet-D

Lavitt, F. et al. (2021). Automatic cell counting using a Convolutional Neural Network-based regressor with an VU k
application to microscope images of human cancer cell, (under submission)
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Machine learning pipeline: min. avg. error = 40

60 1 o
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30 o

CNN w/ TL: avg. error = 33
CNN w/ TL: avg. error =12 é

CNN

Lavitt, F. et al. (2021). Automatic cell counting using a Convolutional Neural Network-based regressor with an VU k
application to microscope images of human cancer cell, (under submission)



e Life sciences are fascinating!

64



e Life sciences are fascinating!

e Computational methods give a great
opportunity to study our reality.

e Al-powered tools are useful from nano to
macro scale.

65



e Life sciences are fascinating!

e Computational methods give a great
opportunity to study our reality.

e Al-powered tools are useful from nano to
macro scale.

e We should always try to use as much of
prior knowledge as possible.

66



e Life sciences are fascinating!

e Computational methods give a great
opportunity to study our reality.

e Al-powered tools are useful from nano to
macro scale.

e We should always try to use as much of
prior knowledge as possible.

e Deep learning is not an answer to all
questions.
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