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All that glitters is not Deep Learning 
in Life Sciences (but sometimes it is!)
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(we must be EFFICIENT!) 
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We know the mathematical description and want to identify the 
parameters of the network with limited measurements.   
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Input
(nutrients)

Biochemical processes
(enzymes + products)

Output
(living cells)

How to understand the phenomenon?
We don’t know the “inside” and treat is as a black-box.

By learning the input-output dependency, we can understand 
(to some degree) the phenomenon or use the model to study it.



Enzyme kinetics: how the chemical reactions are catalyzed by enzymes. 

Goal: Find the reaction rate (i.e., the speed at which a chemical reaction 
takes place) of a single reaction. 

Why? 
- Understanding the catalytic mechanism of an enzyme. 
- Understanding the role of an enzyme in a chemical reaction. 
- Understanding how an enzyme activity is controlled. 
- Understanding how a drug (inhibitor) slows down the reaction.

ENZYME KINETICS: INTRODUCTION
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The commonly used model in enzyme kinetics is the Michaelis-Menten 
model. 

We consider a reversible reaction where an enzyme (E) binds to a 
substrate (S) to form a complex (ES) to irreversibly release a product (P) 
and free the enzyme: 
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We consider a reversible reaction where an enzyme (E) binds to a 
substrate (S) to form a complex (ES) to irreversibly release a product (P) 
and free the enzyme. 
Considering the system in a quasi-steady-state, we get: 
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We consider a reversible reaction where an enzyme (E) binds to a 
substrate (S) to form a complex (ES) to irreversibly release a product (P) 
and free the enzyme. 
Considering the system in a quasi-steady-state, we get: 

Solution: 
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v =
dP
dt

=
VmaxS

KM + S
=

E0kcatS
KM + S

v = Vmax(1 − exp(−bS))



How to find the kinetic parameter values? The standard approach.
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How to find the kinetic parameter values? The standard approach.
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Pros:
- easy
- pretty accurate 

Cons:
- super laborious 
- wastes a lot of  

substrate
- time-consuming  



How to find the kinetic parameter values? Our approach: ABC.
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How to find the kinetic parameter values? Our approach: ABC.
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Our main motivation: Use (cheap) computations instead 
of laborious and costly work in a lab. 

Proposition: Use Approximate Bayesian Computation.



How to find the kinetic parameter values? Our approach: ABC.
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1. Initialize . 
2. For : 

(i)   (Generate) Sample . 
(ii)  (Evaluate) Calculate the distance: 

 

(iii) (Select) 
If , then . 
Else .

θt := θ0

t ∈ {0,1,…, T − 1}
θ′ ∼ q(θ |θt)

Δ(θ′ ) = ∥x − f (θ′ )∥2

Δ(θ′ ) < ε θt+1 := θ′ 

θt+1 := θt



How to find the kinetic parameter values? Our approach: ABC.
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1. Initialize . 
2. For : 

(i)   (Generate) Sample . 
(ii)  (Evaluate) Calculate the distance: 

 

(iii) (Select) 
If , then . 
Else .

θt := θ0

t ∈ {0,1,…, T − 1}
θ′ ∼ q(θ |θt)

Δ(θ′ ) = ∥x − f (θ′ )∥2

Δ(θ′ ) < ε θt+1 := θ′ 

θt+1 := θt

simulator (the MM model)



How to find the kinetic parameter values? Our approach: ABC.
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one enzymatic assay using Approximate Bayesian Computation. FEBS letters, 593(19), 2742-2750.



How to find the kinetic parameter values? Our approach: ABC.
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Pros:
- easy
- >10x faster
- cheaper!

Cons:
- requires prior  

knowledge   

Tomczak, J. M., & Weglarz-Tomczak, E. (2019). Estimating kinetic constants in the Michaelis–Menten model from 
one enzymatic assay using Approximate Bayesian Computation. FEBS letters, 593(19), 2742-2750.



human aminopeptidase (hAPN), Sus scrofa APN (ssAPN) and human 
endoplasmic reticulum aminopeptidase 2 (hERAP2) 

ENZYME KINETICS: THREE AMINOPEPTIDASES

39

kcat KM

 standard approach ◼



In our recent study, we presented: 
- An analysis of the active site of PLpro (enzyme) 
in SARS-CoV-1 (SARS) and SARS-CoV-2 (CoV2).  

- A kinetic analysis of the Ub-AMC hydrolysis by  
PLpro from SARS and CoV2 

- Ebselen and structural analogues of ebselen  
as potent covalent inhibitors of PLproCoV2 
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40 Weglarz-Tomczak, E. et al. (2021). Identification of ebselen and its analogues as potent covalent inhibitors of 
papain-like protease from SARS-CoV-2. Scientific reports, 11(1), 1-10.
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papain-like protease from SARS-CoV-2. Scientific reports, 11(1), 1-10.

We see that SARS-CoV-1 is 3 
times faster!

This confirms a known fact: 
once infected, SARS-CoV-1 was 
overall more aggressive and the 
disease developed faster.
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Let us look at a network of reactions. 
First, we focus on the well-known gene repressilator model: 
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GOAL: Find parameters  by observing only mRNA (m), 
i.e., gene expression, NOT proteins (p).

[α, α0, β, n]



What we know: 
• We know the model (i.e., ODEs). 
• For given parameter values, we can always run a numerical integrator. 
• There are four parameters. 

IDENTIFICATION OF WHOLE NETWORKS: GENE REPRESSILATOR MODEL

47



What we know: 
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What we know: 
• We know the model (i.e., ODEs). 
• For given parameter values, we can always run a numerical integrator. 
• There are four parameters. 

This problem could be solved using computational methods, namely, 
derivative-free optimization (or, as previously presented, ABC). 

For instance, we can use population-based algorithms.
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• The key idea: Run an algorithm multiple times in parallel and exchange 
information about the objective among solutions.
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• The key idea: Run an algorithm multiple times in parallel and exchange 
information about the objective among solutions. 

• The general scheme: 

1.(Init) Initialize a population of solutions,  , and evaluate. 

2. Repeat until STOP: 

(i)  (Generate) Generate new solutions,  . 

(ii) (Evaluate) Evaluate new solutions. 

(iii)(Select) Select  from  and  .

𝒫t := 𝒫0

𝒮t+1

𝒫t+1 𝒫t 𝒮t+1
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xnew = x1 + γ(x2 − x3)

Select best performing candidates  
from the old population and new points.

differential mutation 
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53 Tomczak, J. M., Węglarz-Tomczak, E., Eiben, A. E. (2020). Differential evolution with reversible linear transformations. 
In Genetic and Evolutionary Computation Conference (GECCO) (pp. 205-206).

 the 1st generation
 the 4th generation
 the 8th generation
 the 20th generation

·
·
·
·



Now we are ready to attack the larger problem. 

We consider the problem glycolysis of the baker’s yeast. 
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Now we are ready to attack the larger problem. 

We consider the problem glycolysis of the baker’s yeast. 

The whole glycolysis is extremely complex process. 

In our studies, we used a simplified model: 

• 11 reactions; 

• 9 metabolites; 

• 18 kinetic parameters. 

We assume that 5 metabolites are observed.
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Code: https://github.com/jmtomczak/popi4sb

Weglarz-Tomczak, E., Tomczak, J. M., Eiben, A. E., & Brul, S. (2021). Population-Based Parameter Identification for 
Dynamical Models of Biological Networks with an Application to Saccharomyces cerevisiae. Processes, 9(1), 98.

https://github.com/jmtomczak/popi4sb
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Unobserved metabolites
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Input
(nutrients) Black box Image +

counts of cells

ASSUMPTIONS:
(i) We don’t know how the cancer develops. 
(ii) We give different nutrients to determine how they influences cancer.

GOAL: Automatically calculate cells and treat is as a regression task.



Data: 

• a human osteosarcoma (U2OS) and a human leukemia (HL-60) 

• 165 images (133 training, 32 test) 

• 700px by 700px 

• Collected at the UvA 
(led by E.W.-T.)

(AUTOMATIC) CELL COUNTING: THE CASE OF CANCER CELLS

60 Lavitt, F. et al. (2021). Automatic cell counting using a Convolutional Neural Network-based regressor with an 
application to microscope images of human cancer cell, (under submission)
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61 Lavitt, F. et al. (2021). Automatic cell counting using a Convolutional Neural Network-based regressor with an 
application to microscope images of human cancer cell, (under submission)

A: Machine learning pipeline.     B: Deep learning approach.
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62 Lavitt, F. et al. (2021). Automatic cell counting using a Convolutional Neural Network-based regressor with an 
application to microscope images of human cancer cell, (under submission)

We used xResNet
+ transfer learning.



(AUTOMATIC) CELL COUNTING: THE CASE OF CANCER CELLS

63 Lavitt, F. et al. (2021). Automatic cell counting using a Convolutional Neural Network-based regressor with an 
application to microscope images of human cancer cell, (under submission)

Machine learning pipeline: min. avg. error = 40

CNN w/ TL: avg. error = 33
CNN w/ TL: avg. error = 12
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• Life sciences are fascinating! 

• Computational methods give a great 
opportunity to study our reality. 

• AI-powered tools are useful from nano to 
macro scale. 

• We should always try to use as much of 
prior knowledge as possible. 

• Deep learning is not an answer to all 
questions.

CONCLUSION
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