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Recent breakthroughs

Dalle 2⋅ Imagen

How big are the models?

Are the samples cherry-picked?

Can we use these models beyond data synthesis?
How long did it take to train these models?

Fantastic results!



Modeling: Discriminative vs. Generative



• Discriminative models: drawing boundaries in the data space, .


• Generative models: explaining how the data was generated, .

p(y |x)

p(x, y)
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Jebara, T. (2012). Machine learning: discriminative and generative (Vol. 755). Springer Science & Business Media.



• Discriminative models: drawing boundaries in the data space, .


• Generative models: explaining how the data was generated, .


• In ML, many models are generative:


- Naive Bayes, Linear Discriminant Analysis


- Bayesian networks & Markov random fields


- (Gaussian) Mixture Models, Latent Dirichlet Allocation, Factor Analysis, PCA


- Chinese restaurant process, Indian buffet process

p(y |x)

p(x, y)

Modeling: Discriminative vs. Generative

Jebara, T. (2012). Machine learning: discriminative and generative (Vol. 755). Springer Science & Business Media.
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Generative = How data is generated

Knowing the joint distribution tells us a lot about the phenomenon!
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Why Generative AI?

Human intelligence is intrinsically generative

GAI = AGI?


or


AGI through GAI 



Generative AI 

p(x, y) = p(y |x) p(x)



Generative AI 

p(x, y) = p(y |x) p(x)

Any deep learning predictor A density estimator


A probabilistic modelRelatively easy

Challenging!
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Generative AI and (spherical) cows

A high-dim object
Latent Variable Models Flow-based models

Autoregressive Models
Diffusion models


Energy-based models

Goal: p(x)
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Let’s consider a latent variable model  
where we distinguish:


• latent variables 


• observable variables 


Latent variables lie on a  
low-dimensional manifold.

z ∈ 𝒵M

x ∈ 𝒳D

Variational Auto-encoders

Generative process:

1. z ∼ p(z)
2. x ∼ p(x |z)
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Let’s consider a latent variable model  
where we distinguish:


• latent variables 


• observable variables 


Latent variables lie on a  
low-dimensional manifold.

z ∈ 𝒵M

x ∈ 𝒳D

Variational Auto-encoders

Generative process:

1. z ∼ p(z)
2. x ∼ p(x |z)

The objective function:


ln p(x) = ln∫ p(x |z)p(z) dz The integral is intractable…



ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]

Variational Auto-encoders

ELBO: Evidence Lower Bound

Kingma, D.P., and Welling, M. "Auto-encoding variational bayes." ICLR 2014
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We consider amortized inference: 


In other words, a single parameterization for each new input x.


Moreover, we use the reparameterization trick.

ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]
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Variational Auto-encoders

Kingma, D.P., and Welling, M. "Auto-encoding variational bayes." ICLR 2014

Every Gaussian variable could be defined as:


where 
z = μ + σ ⋅ ε

ε ∼ 𝒩(0,1)






 
We consider amortized inference: 


In other words, a single parameterization for each new input x.


Moreover, we use the reparameterization trick.

ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]
qϕ(z |x)

Variational Auto-encoders

Kingma, D.P., and Welling, M. "Auto-encoding variational bayes." ICLR 2014

It reduces the variance of the gradients.

It allows to get randomness outside z.

z = μ + σ ⋅ ε



Hierarchical Variational Auto-encoders

Generations Hierarchical VAE

Gatopoulos, I., and Tomczak, J.M., "Self-Supervised Variational Auto-Encoders." Entropy (2021).



Top-down Variational Auto-encoders

Generations Hierarchical VAE

Child, R. "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images." ICLR 2021



Diffusion-based deep generative models

Forward diffusion (FIXED!)

Backward diffusion (learnable)

Sohl-Dickstein J., Weiss E., Maheswaranathan N., & Ganguli S.. Deep unsupervised learning using nonequilibrium thermodynamics. ICML 2015 
Ho, J., Jain, A., & Abbeel, P. Denoising diffusion probabilistic models. NeurIPS 2020
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• We change a random variable x to another random variable z using invertible transformations, 
:x, z ∈ ℝD

Flows (Flow-based models)

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1
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Invertible neural networks!



• We change a random variable x to another random variable z using invertible transformations, 
:x, z ∈ ℝD

Flows (Flow-based models)

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Simple distribution Complex distribution



• We change a random variable x to another random variable z using invertible transformations, 
:x, z ∈ ℝD

Flows (Flow-based models)

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Simple distribution

Known (Gaussian)



• We change a random variable x to another random variable z using invertible transformations, 
:x, z ∈ ℝD

Flows (Flow-based models)

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1 Jacobian must be 


tractable



• We change a random variable x to another random variable z using invertible transformations, 
:


• Training objective:

x, z ∈ ℝD

Flows (Flow-based models)

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

ln p(x) = ln π (z0 = f −1(x)) −
K

∑
i=1

ln Jfi(zi−1)



Two main components


1) Coupling layer:








is invertible by design:








2) Permutation layer

ya = xa

yb = exp (s (xa)) ⊙ xb + t (xa)

xb = (yb − t(ya)) ⊙ exp (−s(ya))
xa = ya

Flows (Flow-based models): Invertible layers



Two main components


1) Coupling layer:








is invertible by design:








2) Permutation layer

ya = xa

yb = exp (s (xa)) ⊙ xb + t (xa)

xb = (yb − t(ya)) ⊙ exp (−s(ya))
xa = ya

Flows (Flow-based models): Invertible layers

det(J) =
D−d

∏
j=1

exp (s (xa))j
= exp

D−d

∑
j=1

s (xa)j

Jacobian is tractable! 

det(J) = 1



Flows (Flow-based models)

Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPS, 2018



Deep Generative Modeling
The first comprehensive book on 
Generative AI.


Tomczak, J.M., (2022), “Deep Generative 
Modeling”, Springer Cham



Invertible DenseNets with Concatenated LipSwish
The change-of-variables formula:

DenseNet block:

Perugachi-Diaz, Y., Tomczak, J.M., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS 2021

Concatenated LipSwish:

Example generations:
Yura 

Perugachi-Diaz
Sandjai 
Bhulai

Classification:

Jakub M. 
Tomczak



On Analyzing Generative and Denoising Capabilities of 
Diffusion-based Deep Generative Models

Kamil 
Deja

Anna 
Kuzina

Tomasz 
Trzciński

Dividing a diffusion model into a denoiser and a generator:

Example results:

Deja, K., Kuzina, A., Trzciński, T., & Tomczak, J.M., (2022). On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models. (Under review)

Jakub M. 
Tomczak



Alleviating Adversarial Attacks on 

Variational Autoencoders with MCMC

Anna 
Kuzina

Max 
Welling

Jakub M. 
Tomczak

Unsupervised attacks on VAE and the proposed defense:
Example results:

Kuzina, A., Welling, M., & Tomczak, J.M., (2022). Alleviating Adversarial Attacks on Variational Autoencoders with MCMC. (Under review)
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Challenges in Generative AI

New architectures

Causality theory

New modules

New learning methods

Geometric 
Probabilistic Models

Discrete  
Probabilistic Models

Quantization

Inference methods

Tractable models

Tiny DL

New parameterizations

Reliability

Deploying on 
edge devices

Reproducibility

Model size

Hybrid  
probabilistic models

Inference time

New computing paradigms



Jakub M. Tomczak

assistant professor of AI

Vrije Universiteit Amsterdam


   jmk.tomczak@gmail.com

  https://jmtomczak.github.io/

  https://github.com/jmtomczak

Thank you!


