Generative Artificial Intelligence JAKUB M. TOMCZAK VRIJE UNIVERSITEIT AMSTERDAM

"a painting of a fox sitting in a field at sunrise in the style of Claude Monet"

Dalle-2

Ramesh et al., "Hierarchical Text-Conditional Image Generation with CLIP Latents", April 13, 2022

A Pomeranian is sitting on the Kings throne wearing a crown. Two tiger soldiers are standing next to the throne.

A robot couple fine dining with Eiffel Tower in the background.

Imagen

Saharia et al., "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", **May 23, 2022**

Dalle-2

Ramesh et al., "Hierarchical Text-Conditional Image Generation with CLIP Latents", April 13, 2022

Fantastic results!

A Pomeranian is sitting on the Kings throne wearing a crown. Two tiger soldiers are standing next to the throne.

A robot couple fine dining with Eiffel Tower in the background.

Imagen

Saharia et al., "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", **May 23, 2022**

"a painting of a fox sitting in a field at sunrise in the style of Claude Monet"

How big are the models?

Dalle-2

Ramesh et al., "Hierarchical Text-Conditional Image Generation with CLIP Latents", April 13, 2022

Fantastic results!

A Pomeranian is sitting on the Kings throne wearing a crown. Two tiger soldiers are standing next to the throne.

A robot couple fine dining with Eiffel Tower in the background.

Imagen

Saharia et al., "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", **May 23, 2022**

"a painting of a fox sitting in a field at sunrise in the style of Claude Monet"

How big are the models?

Are the samples cherry-picked? Can we use these models beyond data synthesis? How long did it take to train these models?

Fantastic results!

A Pomeranian is sitting on the Kings throne

Modeling: Discriminative vs. Generative

Modeling: Discriminative vs. Generative

- **Discriminative models**: drawing boundaries in the data space, $p(y | \mathbf{x})$.
- Generative models: explaining how the data was generated, $p(\mathbf{x}, y)$.

Modeling: Discriminative vs. Generative

- **Discriminative models**: drawing boundaries in the data space, $p(y | \mathbf{x})$.
- Generative models: explaining how the data was generated, $p(\mathbf{x}, y)$.
- In ML, many models are **generative**:
 - Naive Bayes, Linear Discriminant Analysis
 - Bayesian networks & Markov random fields
 - (Gaussian) Mixture Models, Latent Dirichlet Allocation, Factor Analysis, PCA
 - Chinese restaurant process, Indian buffet process

p(blue|x) is high
= certain decision!

 $p(y|\mathbf{x})$

p(blue|x) is high
= certain decision!

 $p(y|\mathbf{x})$

 $p(\mathbf{x}, y) = p(y|\mathbf{x}) p(\mathbf{x})$

p(blue|x) is high
and p(x) is low
= uncertain decision!

p(blue **x**) is high = certain decision!

Knowing the joint distribution tells us a lot about the phenomenon!

 $p(\mathbf{x}, y) = p(y|\mathbf{x}) p(\mathbf{x})$

p(blue **x**) is high and $p(\mathbf{x})$ is low = uncertain decision!

Why Generative AI? Human intelligence is intrinsically generative

Why Generative AI? Human intelligence is intrinsically generative GAI = AGI?

AGI through GAI

Generative A

$p(\mathbf{x}, y) = p(y | \mathbf{x}) p(\mathbf{x})$

Generative A

Any deep learning predictor

Relatively easy

Overview of Generative Al

Overview of Generative Al

Z1

Z2

Zβ

Z3

Generative Al and (spherical) cows

A high-dim object

Latent Variable Models

Goal: $p(\mathbf{x})$

Flow-based models

Diffusion models Energy-based models

Generative Al and (spherical) cows Flow-based models Latent Variable Models

A high-dim object

Goal: $p(\mathbf{x})$

Diffusion models Energy-based models

Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathscr{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a low-dimensional manifold.

Generative process:

1. $\mathbf{z} \sim p(\mathbf{z})$ 2. $\mathbf{x} \sim p(\mathbf{x} | \mathbf{z})$

Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathscr{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a low-dimensional manifold.

The objective function: $\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$ $p(\mathbf{z})$

Generative process:

1. $\mathbf{z} \sim p(\mathbf{z})$ 2. $\mathbf{x} \sim p(\mathbf{x} | \mathbf{z})$

Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathscr{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a low-dimensional manifold.

The objective function: $\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$ $p(\mathbf{z})$

Generative process:

1. $\mathbf{z} \sim p(\mathbf{z})$ 2. $\mathbf{x} \sim p(\mathbf{x} | \mathbf{z})$

The integral is intractable...

 $\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right]$

$$\int \left[-\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} | \mathbf{x}) - \ln p(\mathbf{z}) \right] \right]$$

ELBO: Evidence Lower Bound

Kingma, D.P., and Welling, M. "Auto-encoding variational bayes." ICLR 2014

 $\ln p(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right]$

We consider amortized inference: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

In other words, a single parameterization for each new input **x**.

$$\left| - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} | \mathbf{x}) - \ln p(\mathbf{z}) \right] \right|$$

Kingma, D.P., and Welling, M. "Auto-encoding variational bayes." ICLR 2014

 $\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right]$

We consider amortized inference: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

In other words, a single parameterization for each new input **x**.

Moreover, we use the **reparameterization trick**.

Every Gaussian variable could be defined as: $z = \mu + \sigma \cdot \varepsilon$ where $\varepsilon \sim \mathcal{N}(0,1)$

$$\int -\mathbb{E}_{\mathbf{z}\sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln q_{\phi}(\mathbf{z}|\mathbf{x}) - \ln p(\mathbf{z}) \right]$$

Kingma, D.P., and Welling, M. "Auto-encoding variational bayes." ICLR 2014

 $\ln p(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right]$

We consider amortized inference: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

In other words, a single parameterization for each new input **x**.

Moreover, we use the **reparameterization trick**.

It reduces the variance of the gradients. It allows to get randomness outside **Z**. $z = \mu + \sigma \cdot \varepsilon$

$$\int \left[-\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} | \mathbf{x}) - \ln p(\mathbf{z}) \right] \right]$$

Kingma, D.P., and Welling, M. "Auto-encoding variational bayes." ICLR 2014

Hierarchical Variational Auto-encoders

Generations

3lvl downscale selfVAE **i**

Hierarchical VAE

Gatopoulos, I., and Tomczak, J.M., "Self-Supervised Variational Auto-Encoders." Entropy (2021).

Top-down Variational Auto-encoders

Generations

Hierarchical VAE

Child, R. "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images." ICLR 2021

Diffusion-based deep generative models

$q_{\phi}(\mathbf{z}_i \mid \mathbf{z}_{i-1}) = \mathcal{N}$

Forward diffusion (FIXED!)

Sohl-Dickstein J., Weiss E., Maheswaranathan N., & Ganguli S.. Deep unsupervised learning using nonequilibrium thermodynamics. ICML 2015 Ho, J., Jain, A., & Abbeel, P. Denoising diffusion probabilistic models. NeurIPS 2020

$$\left(\mathbf{z}_i \mid \sqrt{1 - eta_i} \mathbf{z}_{i-1}, eta_i \mathbf{I}
ight)$$

Backward diffusion (learnable)

Generative Al and (spherical) cows

A high-dim object

Latent Variable Models

Goal: $p(\mathbf{x})$

Flow-based models

Diffusion models Energy-based models

 $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{D}$:

$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1} \right)$

$$-\mathbf{I}(\mathbf{x}) \prod_{i=1}^{K} \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

 $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$:

 $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{D}$:

 $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$:

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f \right)$$

 $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{D}$: Known (Gaussian)

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f \right)$$

Simple distribution

"latent" space

U

 $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$:

• We change a random variable **x** to another random variable **z** using invertible transformations,

pixel space

 $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{D}$:

$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1} \right)$

• Training objective:

$\ln p(\mathbf{x}) = \ln \pi \left(\mathbf{z}_0 = f \right)$

$$-1(\mathbf{x}) \prod_{i=1}^{K} \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

$$(\mathbf{x}^{-1}(\mathbf{x})) - \sum_{i=1}^{K} \ln \left| \mathbf{J}_{f_i}(z_{i-1}) \right|$$

Flows (Flow-based models): Invertible layers

Two main components

1) Coupling layer:

$$\mathbf{y}_{a} = \mathbf{x}_{a}$$
$$\mathbf{y}_{b} = \exp\left(s\left(\mathbf{x}_{a}\right)\right) \odot \mathbf{x}_{b} + t\left(\mathbf{x}_{a}\right)$$

is invertible by design:

$$\mathbf{x}_b = (\mathbf{y}_b - t(\mathbf{y}_a)) \odot \exp(-s(\mathbf{y}_a))$$

$$\mathbf{x}_a = \mathbf{y}_a$$

2) **Permutation layer**

Flows (Flow-based models): Invertible layers

Two main components

1) Coupling layer:

$$\mathbf{y}_{a} = \mathbf{x}_{a}$$
$$\mathbf{y}_{b} = \exp\left(s\left(\mathbf{x}_{a}\right)\right) \odot \mathbf{x}_{b} + t\left(\mathbf{x}_{a}\right)$$

is invertible by design:

$$\mathbf{x}_b = (\mathbf{y}_b - t(\mathbf{y}_a)) \odot \exp(-s(\mathbf{y}_a))$$

 $\mathbf{x}_a = \mathbf{y}_a$

2) **Permutation layer**

det(.) = 1

Jacobian is tractable!

$$\det(\mathbf{J}) = \prod_{j=1}^{D-d} \exp\left(s\left(\mathbf{x}_{a}\right)\right)_{j} = \exp\left(\sum_{j=1}^{D-d} s\left(\mathbf{x}_{a}\right)_{j}\right)$$

Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPS, 2018

Deep Generative Modeling

The first comprehensive book on Generative AI.

Tomczak, J.M., (2022), "Deep Generative Modeling", Springer Cham

Invertible DenseNets with Concatenated LipSwish

The change-of-variables formula:

 $\ln p_X(x) = \ln p_Z(z) + \ln |\det J_F(x)|$

 $g(x) = W_{n+1} \circ h_n \circ \dots \circ h_1(x)$ $h_1(x) = \begin{vmatrix} x \\ \phi(W_1 x) \end{vmatrix}, \ h_2(h_1(x)) = \begin{vmatrix} h_1(x) \\ \phi(W_2 h_1(x)) \end{vmatrix}$

 $+ \quad x = F(x)$

Concatenated LipSwish:

DenseNet block:

$$\Phi(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix} = \begin{bmatrix} \text{LipSwish}(x) \\ \text{LipSwish}(-x) \end{bmatrix}, \quad \text{CLipSwish}(x) = \Phi(x)/\text{Lip}(\Phi)$$
$$\sup_x \sqrt{\left(\frac{\partial \phi_1(x)}{\partial x}\right)^2 + \left(\frac{\partial \phi_2(x)}{\partial x}\right)^2}$$

Perugachi-Diaz, Y., Tomczak, J.M., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS 2021

Sandjai

Bhulai

Yura Perugachi-Diaz

Example generations:

(a) Real CIFAR10 images.

(b) Samples of i-DenseNets trained on CIFAR10.

(c) Real ImageNet32 images.

(d) Samples of i-DenseNets trained on ImageNet32.

Classification:

	$\lambda = 0$	$\lambda = \frac{1}{D}$		$\lambda = 1$	
Model \Evaluation	Acc \uparrow	Acc \uparrow	bpd \downarrow	Acc \uparrow	bpd \downarrow
Coupling	89.77%	87.58%	4.30	67.62%	3.54
+ 1×1 conv	90.82%	87.96%	4.09	67.38%	3.47
Residual Blocks (full)	91.78%	90.47%	3.62	70.32%	3.39
Dense Blocks (full)	92.40%	90.79%	3.49	75.67%	3.31

On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models

Dividing a diffusion model into a denoiser and a generator:

$$\overline{\ell}(\mathbf{x}_{0};\varphi,\theta) = \mathbb{E}_{\mathbf{x}_{1}\sim q(\mathbf{x}_{1}|\mathbf{x}_{0})} \left[\ln p\left(\mathbf{x}_{0}|f_{\varphi}\left(\mathbf{x}_{1}\right)\right) + \ln p_{\theta}(\mathbf{x}_{1})\right] \\
\geq \underbrace{\mathbb{E}_{\mathbf{x}_{1}\sim q(\mathbf{x}_{1}|\mathbf{x}_{0})} \left[\ln p\left(\mathbf{x}_{0}|f_{\varphi}\left(\mathbf{x}_{1}\right)\right)\right]}_{\ell_{\text{DAE}}(\mathbf{x}_{0};\varphi)} + \underbrace{\mathbb{E}_{q(\mathbf{x}_{2},...,\mathbf{x}_{T}|\mathbf{x}_{1})} \left[\frac{\ln p_{\theta}(\mathbf{x}_{1},...,\mathbf{x}_{T}|\mathbf{x}_{1})}{q(\mathbf{x}_{1},...,\mathbf{x}_{T}|\mathbf{x}_{0})}\right]}_{\ell_{\text{D}}(\mathbf{x}_{0};\theta)}$$

Kamil Deja

Anna Kuzina Trzciński

Tomasz

Deja, K., Kuzina, A., Trzciński, T., & Tomczak, J.M., (2022). On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models. (Under review)

Alleviating Adversarial Attacks on Variational Autoencoders with MCMC

Unsupervised attacks on VAE and the proposed defense:

Theorem 1 The upper bound on the total variation distance between samples from MCMC for a given corrupted point \mathbf{x}^a , $q^{(t)}(\mathbf{z}|\mathbf{x}^a)$, and the variational posterior for the given real point \mathbf{x}^r , $q_{\phi}(\mathbf{z}|\mathbf{x}^r)$, is the following:

$$\begin{aligned} \operatorname{TV}\left[q^{(t)}(\mathbf{z}|\mathbf{x}^{a}), q_{\phi}(\mathbf{z}|\mathbf{x}^{r})\right] &\leq \operatorname{TV}\left[q^{(t)}(\mathbf{z}|\mathbf{x}^{a}), p_{\theta}(\mathbf{z}|\mathbf{x}^{a})\right] \\ &+ \sqrt{\frac{1}{2}D_{\mathrm{KL}}\left[q_{\phi}(\mathbf{z}|\mathbf{x}^{r}) \| p_{\theta}(\mathbf{z}|\mathbf{x}^{r})\right]} \\ &+ o(\sqrt{\|\varepsilon\|}). \end{aligned}$$

Kuzina, A., Welling, M., & Tomczak, J.M., (2022). Alleviating Adversarial Attacks on Variational Autoencoders with MCMC. (Under review)

Welling

Example results:

Kuzina

(e) $\widetilde{\mathbf{x}}_{HMC}^{a}$

Data synthesis Neural com-Applications pression Energybased Models ARMs Probabilistic **Generative AI** Flows Modeling Latent Variable

Models

VAEs

Diffusio

models

GANs

Probabilistic Invertible Circuits \mathbf{NNs} ResNets & DenseNets

Neural Fields

Graph NNs

Data synthesis Neural com-Applications pression Energybased Models ARMs Probabilistic **Generative AI** Flows Modeling Latent Variable

Models

VAEs

Diffusio

models

GANs

Probabilistic Invertible Circuits \mathbf{NNs} ResNets & DenseNets

Neural Fields

Thank you!

Jakub M. Tomczak assistant professor of Al Vrije Universiteit Amsterdam

jmk.tomczak@gmail.com
 https://jmtomczak.github.io/
 https://github.com/jmtomczak