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My vision

Concept Drift

Ensemble learning & SVM

Boltzmann Machines

Deep Learning

2009 - X 2016

PhD student / Postdoc

Deep generative modeling:

- VAE 

Deep learning:

- attention mechanism, MIL

X 2016 - IX 2018

Fundamental questions:

- powerful decoders & priors

- simulator-based decoders

- multimodal generative modeling

future

Applications:

- image analysis

- systems biology

- biochemistry

future

Postdoc 
(M. Skłodowska-Curie Fellow)
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Modeling in a high-dimensional space is difficult.

→modeling all dependencies among pixels.

Very inefficient!

A possible solution? →Latent Variable Models



Generative modeling using Latent Variable Models



Generative modeling using Latent Variable Models

How to train it efficiently?
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Variational inference for Latent Variable Models

Reconstruction error Regularization
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Variational inference for Latent Variable Models

decoder (Neural Net)

encoder (Neural Net)

prior

= Variational Auto-Encoder
+ reparameterization trick

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
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Normalizing flows
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non-Gaussian distributions

Autoregressive Prior
Objective Prior
Stick-Breaking Prior
VampPrior

Importance Weighted AE
Renyi Divergence
Stein Divergence

Fully-connected
ConvNets
PixelCNN
Other
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Normalizing flows
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non-Gaussian distributions
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Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770. ICML 2015
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Change of variables:
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Improving posterior using Normalizing Flows

● Diagonal posterior - insufficient and inflexible.

● How to get more flexible posterior?

➢ Apply a series of T invertible transformations 

● New objective:

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770. ICML 2015

Jacobian determinant: (i) general normalizing flow (|det J| is easy to calculate);

  (ii) volume-preserving flow, i.e., |det J| = 1.



Volume-preserving flows

● How to obtain more flexible posterior and preserve |det J|=1?

● Model full-covariance posterior using orthogonal matrices.

● Proposition: Apply a linear transformation:

● Question: Is it possible to model an orthogonal matrix efficiently?

Tomczak, J. M., & Welling, M. (2016). Improving Variational Inference with Householder Flow. arXiv preprint arXiv:1611.09630. NIPS Workshop on Bayesian Deep Learning 
2016

and since U is orthogonal, Jacobian-determinant is 1.
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Householder Flow

● How to obtain more flexible posterior and preserve |det J|=1?

● Model full-covariance posterior using orthogonal matrices.

● Proposition: Apply a linear transformation:

● Question: Is it possible to model an orthogonal matrix efficiently? YES

and since U is orthogonal, Jacobian-determinant would be 1.

Theorem
Any orthogonal matrix with the basis acting on the K-dimensional 
subspace can be expressed as a product of exactly K 
Householder transformations.

Sun, X., & Bischof, C. (1995). A basis-kernel representation of orthogonal matrices. SIAM Journal on Matrix Analysis and 
Applications, 16(4), 1184-1196.

Tomczak, J. M., & Welling, M. (2016). Improving Variational Inference with Householder Flow. arXiv preprint arXiv:1611.09630. NIPS Workshop on Bayesian Deep Learning 
2016



Householder Flow

In the Householder transformation we reflect a vector around a hyperplane 
defined by a Householder vector 

Tomczak, J. M., & Welling, M. (2016). Improving Variational Inference with Householder Flow. arXiv preprint arXiv:1611.09630. NIPS Workshop on Bayesian Deep Learning 
2016

Very efficient: small number of parameters, |J|=1, easy amortization (!). 



Householder Flow (MNIST)

Tomczak, J. M., & Welling, M. (2016). Improving Variational Inference with Householder Flow. arXiv preprint arXiv:1611.09630. NIPS Workshop on Bayesian Deep Learning 
2016

Method ELBO

VAE -93.9

VAE+HF(T=1) -87.8

VAE+HF(T=10) -87.7

VAE+NICE(T=10) -88.6

VAE+NICE(T=80) -87.2

VAE+HVI(T=1) -91.7

VAE+HVI(T=8) -88.3

VAE+PlanarFlow(T=10) -87.5

VAE+PlanarFlow(T=80) -85.1
Non-linear

Volume-preserving



General normalizing flow

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)
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● Let us consider the following normalizing flow:

where A is MxD, B is DxM.

● How to calculate the Jacobian-determinant efficiently?

➢ Sylvester’s determinant identity

Theorem
For all
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Sylvester Flow

● How to use the Sylvester’s determinant identity?

● How to parameterize matrices A and B?

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)

Householder matrices, permutation matrix, orthogonalization procedure



Sylvester Flow

● The Jacobian-determinant:

● As a result, for properly chosen h, the determinant is upper-triangular and, 

thus, easy to calculate.

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Sylvester Flow (MNIST)

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Sylvester Flow (MNIST)

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Sylvester Flow

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Sylvester Flow

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Variational Auto-Encoder

Autoregressive Prior
Objective Prior
Stick-Breaking Prior
VampPrior



New Prior

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018 (oral presentation, 14% of accepted papers)



New Prior

● Let’s re-write the ELBO:
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● Let’s re-write the ELBO:

 

Empirical distribution

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018



New Prior

● Let’s re-write the ELBO:

 
Aggregated posterior

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018



New Prior (Variational Mixture of Posteriors Prior)

● We look for the optimal prior using the Lagrange function:

● The solution is simply the aggregated posterior.

● We approximate it using K pseudo-inputs instead of N observations:
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New Prior (Variational Mixture of Posteriors Prior)

● We look for the optimal prior using the Lagrange function:

● The solution is simply the aggregated posterior.

● We approximate it using K pseudo-inputs instead of N observations:

they are trained from scratch 
by SGD

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018
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New Prior (Variational Mixture of Posteriors Prior)
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Toy problem (MNIST): VAE with dim(z)=2
Latent space representation + psedoinputs (black dots)

K=10standard



Toy problem (MNIST): VAE with dim(z)=2
Latent space representation + psedoinputs (black dots)

K=100standard



Experiments

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018
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Fully-connected
ConvNets
PixelCNN
Other



Other projects



Other projects: Non-Gaussian encoder

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical Variational Auto-Encoders. UAI 2018 (oral presentation)



Other projects: Non-Gaussian encoder

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical Variational Auto-Encoders. UAI 2018 (oral presentation)



Other projects: Permutation-invariant operator
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Cancer cells, somewhat 
counter intuitively, prefer 
fermentation as a source of 
energy rather than the more 
efficient mitochondrial 
pathway of oxidative 
phosphorylation (OxPhos)
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Webpage:
https://jmtomczak.github.io/

Code on github:
https://github.com/jmtomczak/

Contact:
jakubmkt@gmail.com
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