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From Pixels to Cells

The complexity
of Biomedical
Data

Biomedical data span molecules to
organs, combining extreme scale,
heterogeneity, and structure,
motivating advanced Al models for
sequences, graphs, images, and
temporal data.




The complexity of Biomedical Data From Pixels to Cells

Biomedical data - atoms, molecules, cells, tissues, organs (& clinical)

DNA RNA ’'Amino Protein
acid \j
) chain B

Atoms & Molecules Cellular level Tissues Organs
Up to 10°° ~3 x 108 cells in a human body ~10'° pixels per a ~ 108 pixels per
molecules ~6 x 10° nucleotides/seq histopathology a single slide

>60k genes slide



The complexity of Biomedical Data From Pixels to Cells
Biomedical data - atoms, molecules, cells, tissues, organs (& clinical)
As a result, we work with:
e 3D structures (e.g., molecules, proteins)
e Graph-based structured (e.g., molecules)
e \Very long sequences (e.g., DNA sequences, amino acid chains)
e Sparse matrices (e.g., gene expression data)
e Highly structured images (e.g., images of cells, tissues)

e Temporal data

Science and medical data are fascinating for applications of Al!




Diffusion
models lead
the new Al

Diffusion models redefine
generative modeling via
noise-driven learning, enabling rich
research directions and
applications from image generation
and NLP to life sciences.

From Pixels to Cells




Diffusion models lead the new Al From Pixels to Cells

“Creating noise from data is easy; creating data from noise is generative modeling”
(Song et al,, 2020)

15 ~— = < 15
& x x X x x
x *
« x X X X ’$s<% X X x x x ’fs)xx ¥%
o] x XX x 2 x x X
01 X XX x 1.0 X i
XX A % % xXK Xg X
x XU EX % X X gy X X ER K X g.{&
7 x XX seps Xx
X X oo X X xX % X K K x
x % X 3 “Xxgx X)X x % 2% X X
o.s-xx&x XX % x X % X X 0.5 X 20 X %
% X X X X% x N IR x % x xR
x X%/ % % ’::xxxx%x)%‘xﬁ‘ % X ,{@)‘(xx x% x xx>s< % 0¥ x X
St N W o —> 2 o x x x B X
% X x % x% x XX “\(& X X
001 WX x T X BE X Tx QXX RPN 551 RRX X% X Rk
Xx X X XX X X oK X X x
R X% X E xx g X . x x x % % X X
—05¢ X, M, R « X x?x ~0.5 1 x % %§ x
xX _X XXX R X e X T x x*‘z& Zx %
X X X x %K% oy X x % X %
XX X Kopxx X Xxx  ux X x X
—1.0 "5 : . » . . -1.0 . . . . : . ;
25 15 -10 -05 00 05 10 15 20 25



Diffusion models lead the new Al

Diffusion-based models

Forward Diffusion

v

) Backward Diffusion

t

T Denoiser Net

Training objective: E XO

Z)\t lec — ENN(Xtat)”J

From Pixels to Cells

Forward diffusion:

- adds Gaussian noise
Backward diffusion:

- removes noise
Denoiser Net:

- learns how to denoise

- keeps the dimensionality
Connections to VAEs:

- infinitely many latents

- variational posterior is

forward diffusion



Diffusion models lead the new Al From Pixels to Cells

Latent Diffusion Models (LDMs)

Auto-encoder:
- compresses objects
- ideally: no distortion
Diffusion:
- ~ - in the latent space
I' - I Training:
- first AE
- AE - fixed, then Diffusion

Encoder Latent Decoder .
Diffusion Connections to VAEs:

- diffusionis a prior



Diffusion models lead the new Al

There is a lot of diffusion out there

Algorithms

\
\
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- Learning-Based Sampling —4— Truncated Diffusion
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- Exact Likelihood Computation
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Data with Manifold Structures
T\ Loarned waniolds

Variational Autoencoders

Connections with

——
Other Generative Models }—{ Normalizing Fiows

\ Autoregressive Models.

Enorgy-based Models

Unconditional and Conditional Diffusion Models —{

- Conditoning Mecharisms

| Condition Diffusion on Labels and Classifiers

|\ Condition Diffusion on Texts, Images, and Semant; Maps
- Condiion Diffusion on Graphs:

- Image Super Resolution, Inpainting, Restoration, Translation, and Editing

-~ Semantic Segmentation

¢ Gomr o | Voo G
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Applications J

Future Directions

-~ Point Cloud Completion and Generation
- Anomaly Detection

Natural Language Generation

- Toxt-to-imago Genoration

|+ scene Graph-to-image Generation

|~ Text-to-3D Generation
~ Multi-Modal Generation

 Text-to-Mation Generation

|\ Text-to-Video Generation

- Text-to-Audio Generation

- Time Series Imputation
Temporal Data Modeling —| — Time Series Forecasting

Waveform Signal Processing
Robust Leaming
Orug Design and Life Science

Interdisciplinary Appiications —| — Material Design

~ Medical Image Reconstruction

- Revisting Assumptions
|~ Theoretical Understanding
I Latent Representations

- AIGC and Diffusion Foundation Models

From Pixels to Cells

Algorithms

SDE Solvers
Learning-Free Sampling {
ODE Solvers

Efficient Sampling Optimized Discretization
Learning-Based Sampling Truncated Diffusion
Knowledge Distillation
Noise Schedule Optimization
Improved Likelihood Reverse Variance Learning

Exact Likelihood Computation

Discrete Data

Data with Invariant Structures
Data with Special Structures
Known Manifolds
Data with Manifold Structures {
Learned Manifolds

Variational Autoencoders

Generative Adversarial Networks

Connections with Other Generative Models Normalizing Flows

Autoregressive Models

Energy-based Models

Yang, Ling, et al. "Diffusion models: A comprehensive survey of methods and applications." ACM computing surveys 56.4 (2023): 1-39.




Diffusion models lead the new Al

There is a lot of diffusion out there

SDE Sowers
I

I ~ ODE Solvers
/ Effciont Sampling —| Optimized Discretzation
(
[ ™ Leaming-Based Sampling —{— Truncated Diffusion
Knowledge Distilation

~ Noise Schedule Optimization

Algorithms

Inproved Lkthoad —|— everse Variance Laaring

"~ Exact Likelihood Computation

\ |~ Data with Invariant Structures
- Data with Special Structures
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Connections with Other Generative Models }—{ Normalizing Flows

\ Autoregressive Models.

Enorgy-based Models

/~ Conditioning Mechanisms

|~ Gonditon Diffusion on Labels and Classifers
Uncanditonal and Gondilona Difusion Modols —{
[ - Condition Diffusion on Texts, Images, and Semantic Maps
| - Condition Difusion on Graphs
i - Image Super Resolution, Inpainting, Restoration, Translation, and Editing
Diffusion Models | f

-~ Semantic Segmentation
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-~ Point Cloud Completion and Generation

|
| - Anomaly Detection

/- Natural Language Generation
[ Text-to-Image Generation

|+ scene Graph-to-image Generation

I\ |~ Text-to-3D Generation
~ Multi-Modal Generation

N— Applications

Teteo-Meton Gaacston
|\ Toto-vidoo Genaraton
| \. Tt to-Auco Gonarston
| Temporal Data Modeling —{— Time Serles Forecasting
I Wavetorm Signal Processing
N—
\ Drug Design and Life Science

Interdisciplinary Appiications —| — Material Design

7 Retiog hssmtom
|~ Theorstical Understanding
Future Directions

I Latent Representations

~ Medical Image Reconstruction

- AIGC and Diffusion Foundation Models
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~ Conditioning Mechanisms

w‘,«* Condition Diffusion on Labels and Classifiers
Unconditional and Conditional Diffusion Models
[ “\ Condition Diffusion on Texts, Images, and Semantic Maps|

‘ = Condition Diffusion on Graphs

// Image Super Resolution, Inpainting, Restoration, Translation, and Editing
Semantic Segmentation
Video Generation
Point Cloud Completion and Generation
\ Anomaly Detection
~ Natural Language Generation
~ Text-to-Image Generation
|/~ Scene Graph-to-Image Generation
\ I~ Text-to-3D Generation
= Multi-Modal Generation
- Text-to-Motion Generation
| = Text-to-Video Generation

- Text-to-Audio Generation

- Time Series Imputation

|~ Temporal Data Modeling —{— Time Series Forecasting
| \

‘\ -~ Waveform Signal Processing
I\

“- Robust Learning
\‘ /| Drug Design and Life Science

[

Interdisciplinary Applications __V, Material Design

\

- Medical Image Reconstruction

1
Yang, Ling, et al. "Diffusion models: A comprehensive survey of methods and applications." ACM computing surveys 56.4 (2023): 1-39.



Understanding
diffusion
models

Early diffusion steps behave
similarly across datasets and that
denoisers learn rich, reusable
representations. Building on this
insight enables efficient generation,
improved generalization, and
interpretable visual counterfactuals
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From Pixels to Cells




Understanding diffusion models From Pixels to Cells

Are all steps in diffusion models born equal?

0.2 0.2
— FashionMNIST — CelebA
CIFAR10 ol CIFARI0
> [
. 0.11 .
= /” l
t/T t)T
After ~10% of the steps, the reconstruction error The MAE for a DDGM trained on CIFARIO and
starts growing, and the MAE increases linearly evaluated on CIFARIO & CelebA: For the first
above 0.1 (i.e, about 6% of error per pixel). ~10% of steps MAE is the same! Can we reuse?

Deja, (...), Tomczak, "On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models", NeurlPS 2022



Understanding diffusion models From Pixels to Cells
We proposed DAED: Denoising Auto-Encoder with Diffusion
Idea: Take a denoising auto-encoder and add a diffusion-based prior.

Standard diffusion model (coninuation)

Y ’_>

X4000 X2000 X500 p92 X0

Diffusion model

DAED - one step denosing autoencoder

We have:
- tWO denOiSing netS; 1 DGM DDGM DAED DAED
deno.s .ng .s done .n _I Step ¥o B =01 CelebA ImageNet CelebA ImageNet
- ising | i ;
Ll . . . M M . ° . .
- generation is done in multiple steps; Denoising an image from 10% noise:

For DDGM, if a denoiser’s trained on

- The objective: [x;,0) = Ex o
. ;9 x1~q(x |x0) 10D (X0 fy (%1)) + 1Inpa(x1)] . - .
S e Tan Rl (e e [l xr) another data, it fails; but it works for
= Lxy~g(x1]x0 X2yenny X7 |%x1 q(x ooX |X) |
P - (xo;el) T |&0 DA E D .

Deja, (...), Tomczak, "On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models", NeurlPS 2022



Understanding diffusion models

From Pixels to Cells

What is inside denoiser nets? Useful representations!

~

100%
75%

50%

Accuracy

25%

MMM

0%
FashionMNIST SVHN CIFAR-10 CIFAR-100
W Standard classfier  # Classifier on pre-trained DDGM

Averaged representations of an image given by a
denoiser net (e.g, UNet) are useful (here:
classification accuracy) for an MLP-based
classifier trained on them.

0.9
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Black hair ‘/
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/ ,
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1000 800 600 400 200

Timestep

Training binary logistic regressors over attributes
from CelebA based on averaged representations
from a denoiser net results in non-random
performance over time (and sometimes quite

quickly)!

Deja, Trzcinski, Tomczak, "Learning Data Representations with Joint Diffusion Models", ECML 2023



Understanding diffusion models From Pixels to Cells

We proposed Joint Diffusion: DDGM + classifier trained together

Idea: Take a diffusion model and add a classifier to the denoiser net.

" |

T

1npl/,¢,u) (XO:Ta y) — lnpl/,w (yIXO) .n lnpu,v,b (XO:T)

We have: Malaria ->No Malaria No Malaria ->Malaria

- asingle denoising net; Visual counterfactuals

- an extra classification head,; Take an image, add ~10% noise & flip
- we can use classifier for guidance: use 1-step SGD during | the class label, and reconstruct.
sampling through In p(yIx) The model removes/adds info!

Deja, Trzcinski, Tomczak, "Learning Data Representations with Joint Diffusion Models", ECML 2023



Latent
diffusion
models are the
way to go?

Latent diffusion models scale
diffusion to high-resolution images
and discrete biomedical data by
combining auto-encoding, diffusion,
and prediction in latent space.
Latent diffusion provides a unifying
framework from pixels to cells.

From Pixels to Cells




LDMs are the way to go?

From Pixels to Ce

How to deal with high-res data and have a joint model? Joint LDMs!

100 200 300

-

with

Examples of generations increasing
classifier guidance strength.

Using previous ideas works just fine!

Method type Method 2% 5% 10% 20%
Baseline DenseNet (Huang et al., 2017) 69.37 75.35 80.39  83.39
Consistency S2MTS2 (Liu et al., 2021) 7459  76.81 81.72 84.06
Pseudo Label FixMatch (Sohn et al., 2020) 70.83 78.06 80.89 83.76
ACPL (Liu et al., 2022) 7235 7847  83.69  86.57
Diffusion Joint Diffusion (Ours) 79.11 82.03 85.31 88.83

Taking advantage of semi-supervised learning.
Performance comparison of different methods at
various label percentages on the ISIC 2019
dataset.

We can significantly improve the classification
accuracy without using any additional tricks!

lls

Kaleta, (...), Tomczak, Deja "JointDiffusion: Joint representation learning for generative, predictive, and self-explainable Al in healthcare." Computerized Medical Imaging and Graphics, 2025




LDMs are the way to go?

From Pixels to Cells

We proposed Joint LDM: Formulate a joint model in the latent space

Idea: Take a joint diffusion to the latent space.

Training input Joint Diffusion Training output

Labeled B Reconstruction
data | ) \ “
Labels Enc. UNet Dec. 1 ‘
R L
Unlabeled
data Classifier Predictions
s

Semi-supervised

Synthetlc data

classification SRty generation
¥
Classifier
Predictions Labels

We have:
- AE + joint diffusion;
- semi-supervised learning for free;
- away of dealing with high-res images like
medical scans.

Original Explanation Abs. difference

0.5

0.4

0.3

0.2

0.1

0.0
0.5

0.4

0.3

0.2

0.1

0.0
0.5

0.4

0.3

0.2

0.1

Helping with diagnosis: Images are modified
to reduce disease prediction probability
across different classes. Expert-annotated
bounding boxes highlight ROls.

Kaleta, (...), Tomczak, Deja "JointDiffusion: Joint representation learning for generative, predictive, and self-explainable Al in healthcare." Computerized Medical Imaging and Graphics, 2025




LDMs are the way to go?

From Pixels to Cells

How to deal with discrete data like single-cell transcriptomics?

(b) CFGen - unconditional (c) scdiffusion - unconditional

Working directly in
the discrete space is
troublesome.

Dentate Gyrus

VAEs are the way to
go since they allow
working in the latent
space.

Tabula Muris

e generated
true

However, weak AEs
can cripple the
performance.

HLCA

Weak AE Powerful AE

Palla, (..), Tomczak, "Scalable Single-Cell Gene Expression Generation with Latent Diffusion Models", arXiv 2025

Now, questions are the following:

(M
(2)

(3)

(4)

How to deal with exchangeable data?

How to formulate adaptive and powerful
autoencoders?

How to ensure rich and flexible latent
spaces (embeddings)?

How to make the whole approach scalable,

i.e., more data = better performance?

20



LDMs are the way to go?

From Pixels to Cells

We proposed scLDM: LDM + classifier-free guidance for perturbations

Idea: Train a fully transformer-based LDM

A Encoder Decoder
Se—
Vi i i = R § i
: i : Mol liead Transformer Gaussian [~ .‘. .! Transformer MubEhead & 3

O e [ T © blocks | | Head \I.- = blocks | |° (CETEC g
.! 37 l- Block .l‘._ .ﬁ block Head .
U e o— =z 6

T 1 E T

' ; Q[

oS
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Legend B Latent Diffusion Model %
o
QCIC)  mput: gene 10s & counts
@ Input Token —

t —
G e T @ oo tromer | ()
©m NI
- Inducing Points .-
z -
. Output: parameters t Zi+1

We have:
- atransformer-based AE, permutation-invariant encoder,
permutation-equivariant decoder = exchanchable model;
- tokenized latent space (important!);
- out-of-the-box Diffusion Transformers in the latent
space;
- classifier-free guidance for perturbations.

Palla, (..), Tomczak, "Scalable Single-Cell Gene Expression Generation with Latent Diffusion Models", arXiv 2025

(@) scLDM - conditional (b) CFGen - conditional (c) scdiffusion - conditional

§

true

(d) ACTA2 (¢) COL1A1 MCFD  __ 1ueoma
o sCLDM

000000

scLDM fits data well locally:
Comparing distributions locally reveal
our approach achieves better fit to
data distribution, covering modes
better.

21



From Pixels to Cells

Conclusion




Conclusion

Al4Science has evolved from expert
systems, through data mining, to deep
learning era. Now, the key is how to get
data, utilize prior structures, and blend

them in generative models.

And we are just starting!

From Pixels to Cells



