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Representation learning

What is data representation [1]:

“A good representation is (...) one that is useful as input to a supervised predictor.”

N
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What is data representation [1]:

“A good representation is (...) one that is useful as input to a supervised predictor.”
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= low error (?)
y = fo(2)

what about unsupervised
learning?
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Representation learning

What is data representation [1]:

“A good representation is (...) one that is useful as input to a supervised predictor.”
Z = fe (X) z is useful for the predictor
= low error (?)
y = fo(2)

or, in the context of probabilistic modeling: what about unsupervised

learning?

“(...) a good representation is often one that captures the posterior distribution of the

underlying explanatory factors for the observed input.”
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Representation learning

What is data representation [1]:

“A good representation is (...) one that is useful as input to a supervised predictor.”
Z = fe (X) z is useful for the predictor
= low error (?)
y = fo(2)

or, in the context of probabilistic modeling: what about unsupervised

learning?

“(...) a good representation is often one that captures the posterior distribution of the

underlying explanatory factors for the observed input.”

d(z|x) is non-trivial (?), e.g.,
gy (z[%) o
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Representation learning

What makes a representation good (guidelines) [1]:
e smoothness: x =y implies f(x) = f(y)
e multiple explanatory factors
® a hierarchy of explanatory factors
e spatial/temporal coherence
® sparsity
e factors explain x and help to predict y
e geometrical properties (manifolds)
e generalizability (shared factors across tasks)

e simplicity of factor dependencies

7 [1] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE TPAMI, 35(8), 1798-1828. V U %



Representation learning

What makes a representation good (guidelines) [1]:

Implicit (model inductive biases)

Explicit (objective inductive biases)

® smoothness: x =y implies f(x) = f(y)

e multiple explanatory factors

® a hierarchy of explanatory factors

e geometrical properties (manifolds)

e factors explain x and help to predicty
e (?) spatial/temporal coherence

e (?)simplicity of factor dependencies

smoothness: x =y implies f(x) = f(y)
sparsity

geometrical properties (manifolds)
(?) spatial/temporal coherence

(?) generalizability (shared factors

across tasks)

8 [1] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE TPAMI, 35(8), 1798-1828. V U %



Representation learning

What makes a representation good (guidelines) [1]:

Implicit (model inductive biases)

Explicit (objective inductive biases)

® smoothness: x =y implies f(x) = f(y)

e multiple explanatory factors

® a hierarchy of explanatory factors

e geometrical properties (manifolds)

e factors explain x and help to predicty
e (?) spatial/temporal coherence

e (?)simplicity of factor dependencies

smoothness: x =y implies f(x) = f(y)
sparsity

geometrical properties (manifolds)
(?) spatial/temporal coherence

(?) generalizability (shared factors

across tasks)

What about compression?

9 [1] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE TPAMI, 35(8), 1798-1828. V U %



Representation learning

What makes a representation good (guidelines) [1]:

Is there a single framework for that?
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Representation learning

What makes a representation good (guidelines) [1]:

Is there a single framework for that?

Probabilistic modeling + Deep Learning

flexible parameterization
of distributions
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Representation learning

What makes a representation good (guidelines) [1]:

Is there a single framework for that?

Probabilistic modeling + Deep Learning

Deep Generative Modeling
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Deep Generative Modeling

After [2]:
Generative modeling: formulating a model of the joint distribution, Py (X, y)

Discriminative modeling: formulating a model of the conditional, py (y|x)

15 [2]Jebara, T. (2012). Machine learning: discriminative and generative (Vol. 755). Springer Science & Business Media. V U %



Deep Generative Modeling

After [2]:
Generative modeling: formulating a model of the joint distribution, Py (X, y)

Discriminative modeling: formulating a model of the conditional, py (y|x)

Why do we need generative modeling?

16 [2]Jebara, T. (2012). Machine learning: discriminative and generative (Vol. 755). Springer Science & Business Media. VU %



Deep Generative Modeling

After [2]:
Generative modeling: formulating a model of the joint distribution, Py (X, y)

Discriminative modeling: formulating a model of the conditional, py (y|x)

., VU¥



Deep Generative Modeling

After [2]:
Generative modeling: formulating a model of the joint distribution, Py (X, y)

Discriminative modeling: formulating a model of the conditional, py (y|x)

p(y|x)

p(blue|x) is high
= certain decision!
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Deep Generative Modeling

After [2]:
Generative modeling: formulating a model of the joint distribution, Py (X, y)

Discriminative modeling: formulating a model of the conditional, py (y|x)
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p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low

= uncertain decision!
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Deep Generative Modeling

After [2]:
Generative modeling: formulating a model of the joint distribution, Py (X, y)

Discriminative modeling: formulating a model of the conditional, py (y|x)

p(y|x) p(x,y) = p(y|x) p(x)

p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low

= uncertain decision!

- Considering the joint could be crucial for decision making! VU %?



Deep Generative Modeling

We consider the joint distribution factorized as follows:
po(X,y) = po(y|x) ps(x)

Then the log-likelihood function (assuming iid) takes the following form:

In py(D) = Z Inpy(yn|xn) + Z In py (Xn)
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Deep Generative Modeling

We consider the joint distribution factorized as follows:
po(X,y) = po(y|x) ps(x)

Then the log-likelihood function (assuming iid) takes the following form:

Inpy(D) = Z Inpy(yn|xn) + Z In py (Xn)

e /

Parameterized by deep neural nets Various models:
— Deep Latent Variable Models (e.g.,
VAEs, diffusion models)
— Autoregressive Models (ARMs)

. — Energy-based Models (EBMs) VU %g



Deep Generative Modeling

We consider the joint distribution factorized as follows:
po(X,y) = po(y|x) ps(x)

Then the log-likelihood function (assuming iid) takes the following form:

Inpy(D) = Z Inpy(yn|xn) + Z In py (Xn)

p(ylx) p(x)
t 1

We can use a SharEd Neural Net Neural Net
parameterization. 1 }

Neural Net
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Deep Generative Modeling

We consider the joint distribution factorized as follows:
po(X,y) = po(y|x) ps(x)

Then the log-likelihood function (assuming iid) takes the following form:
In py(D) = Z Inpy(yn|xn) + Z In py (Xn)

1. Are there any problems with this objective?

2. Is this objective appropriate for representation learning?
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Problems with the likelihood function

Let us take a look at the objective again (the log-likelihood function):

Inpy(D) = Z In py (Yn [Xn) + Z In py (xp)
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Problems with the likelihood function

Let us take a look at the objective again (the log-likelihood function):

lnpg(D) — Z lnpz‘}(yn|xn) T Z lnpﬂ(xn)

The conditional log-likelihood function is typically fine!
A potential danger with the marginal log-likelihood function:

— Consider a latent variable model: ps(x) = /pﬂ(x|z) py(z) dz

infinite mixture model
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Problems with the likelihood function

Let us take a look at the objective again (the log-likelihood function):

lnpﬁ(D) — Zlnpﬁ(yn|xn) T Zlnpﬂ(xn)

The conditional log-likelihood function is typically fine!

A potential danger with the marginal log-likelihood function:

— Consider a latent variable model: ps(x) = /pﬂ(x|z) py(z) dz

— |f we take Gaussians, then we get an unbounded likelihood [3]!

Solution: add a constant diagonal matrix
to the decoder’s covariance matrix.

30 [3] Mattei, P. A., & Frellsen, J. (2018). Leveraging the exact likelihood of deep latent variable models. NeurIPS (pp. 3859-3870). V U %



Problems with the likelihood function

Let us take a look at the objective again (the log-likelihood function):

lnpﬁ(D) — Zlnpﬁ(yn|xn) T Zlnpﬂ(xn)

The conditional log-likelihood function is typically fine!

A potential danger with the marginal log-likelihood function:

— Consider a latent variable model: ps(x) = /pﬁ(x|z) py(z) dz

— |f we take Gaussians, then we get an unbounded likelihood [3]!

— If we take Bernoullis (or Categoricals), it’s fine [3]!

31 [3] Mattei, P. A., & Frellsen, J. (2018). Leveraging the exact likelihood of deep latent variable models. NeurIPS (pp. 3859-3870). V U %



The likelihood function for representation learning

Is then the likelihood function well-suited for representation learning?
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The likelihood function for representation learning

Is then the likelihood function well-suited for representation learning?

K L[paata(%)||pe(x)] = —H[pdata(x)] + CE[paata(X)||pe(x)]
= const + CE[pgata (X)||pe(x)]

= const — / Ddata(X) In pg(x) dx

N
1
= const — N nz::l In pg(x1,)

The likelihood-based approach is equivalent to calculating a match between
a model and the empirical distribution according to the KL-divergence.

. VU¥



The likelihood function for representation learning

Is then the likelihood function well-suited for representation learning?

Explicit (objective inductive biases)

® smoothness: x =y implies f(x) = f(y)
® sparsity

e geometrical properties (manifolds)
e (?) spatial/temporal coherence

e (?) generalizability (shared factors

across tasks)

34

The likelihood function alone does not help representation learning explicitly. VU V
m°



The likelihood function for representation learning

Is then the likelihood function well-suited for representation learning?

Three scenarios:

All possible latent variable models A class of latent variable models A class of flexible p(x|z)
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ot & o
Sy S S
Sy S Sy
o ) o
7 @ @
O o) O
S s S
& = =
& e [
= = =}
K L[pdata(x)]|pe (x)] K L[pdata(x)||ps (x)] K L[pdata(x)]|pe (x)]
35 [4] Huszar, F. (2017). Is maximum likelihood useful for representation learning? VU %
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The likelihood function for representation learning

Is then the likelihood function well-suited for representation learning?

Three scenarios:

All possible latent variable models A class of latent variable models A class of flexible p(x|z)
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K L[pdata(x)||po (x)] K L[pgata(x)]|pe (x)] K L[pdata(x)|[pe (x)]

The likelihood function has no incentive to learn useful representations.

N
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The likelihood function for representation learning

Is then the likelihood function well-suited for representation learning?

Three scenarios:

All possible latent variable models A class of latent variable models A class of flexible p(x|z)
0 0 0
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K L[pdata(x)||po (x)] K L[pdata(x)||po (x)] K L[pdata(x)|[pe (x)]

The likelihood function has no incentive to learn useful representations.

But is it bad? Maybe we should focus on the parameterization instead!

37 [4] Huszar, F. (2017). Is maximum likelihood useful for representation learning? VU %
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The likelihood function for representation learning

Is then the likelihood function well-suited for representation learning?

Implicit (model inductive biases)

® smoothness: x =y implies f(x) = f(y)

e multiple explanatory factors

® a hierarchy of explanatory factors

e geometrical properties (manifolds)

e factors explain x and help to predicty
e (?) spatial/temporal coherence

e (?)simplicity of factor dependencies

38

The likelihood function is a general objective and the parameterization is key? VU V
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distribution? What parameterization?
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Classes of DGMs

Before we delve into the parameterizations, let us recap the DGMs:

® Latent Variables Models: p(x) = /p(x|z) p(z) dz

e Flow-based models: p(x) =p(z = f(x))|T ;0]

D
e Autoregressive models: p(x) = p(o Hp(szX<z)

exp{— B (X)}
A

e Energy-based models: p(x) =
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Classes of DGMs

Before we delve into the parameterizations, let us recap the DGMs:

e Latent Variables Models@/p(XIZ)@

Latent variables = representation
e Flow-based models:@ﬂ?(Z = f(x) [T 5

550 Hp(lex<z)

What is a representation here?
exp{—F(x
e Energy-based models@ p1—E(

e Autoregressive models(p(x) =

Z
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Importance of parameterization in Flows

In flows, we need either powerful invertible neural networks, e.g.:
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Importance of parameterization in Flows

In flows, we need either powerful invertible neural networks, e.g.:

— ResNets [5] or DenseNets [6] with constraints (less than 1-Lipschitz).

[5] Chen, R. T., Behrmann, J., Duvenaud, D. K., & Jacobsen, J. H. (2019). Residual Flows for Invertible Generative Modeling. NeurIPS 2019
[6] Perugachi-Diaz, Y., Tomczak, J. M., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS 2021
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Importance of parameterization in Flows

In flows, we need either powerful invertible neural networks, e.g.:

— ResNets [5] or DenseNets [6] with constraints (less than 1-Lipschitz).
or/and invertible structure with easily computable Jacobian, e.g.:

— Householder flows [7], Sylvester flows [8]

— Convolution Exponential + Sylvester flows [9]

[5] Chen, R. T., Behrmann, J., Duvenaud, D. K., & Jacobsen, J. H. (2019). Residual Flows for Invertible Generative Modeling. NeurIPS 2019

[6] Perugachi-Diaz, Y., Tomczak, J. M., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS 2021

[7] Tomczak, J. M., & Welling, M. (2016). Improving variational auto-encoders using householder flow. Bayesian Deep Learing @ NeurlPS 2016

[8] van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. Sylvester Normalizing Flows for Variational Inference. UAI 2018 k
44 [9] Hoogeboom, E., Garcia Satorras, V., Tomczak, J., & Welling, M. (2020). The Convolution Exponential and Generalized Sylvester Flows. NeurlPS 2020 V U oS



Flows for joint modeling

We can use flows to formulate a joint distribution [10]:

p(yTIX)
e The marginal distribution is a flow-based model.
Neural Net
® The mapping from x to z is shared with a predictor.
® We need to change the objective function: Invertible
Neural Net
!
{x(x,y) = Inp(y|x) + Anp(x) X

45 [10] Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Hybrid models with deep and invertible features. ICML 2019 VU %



Flows for joint modeling

We can use flows to formulate a joint distribution [10]:

p(yTIX)
e The marginal distribution is a flow-based model.
Neural Net
® The mapping from x to z is shared with a predictor.
® We need to change the objective function: Invertible
Neural Net
!
{x(x,y) = Inp(y|x) + Anp(x) X

The gradient flow is uneven from the conditional and the marginal.

46 [10] Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Hybrid models with deep and invertible features. ICML 2019 VU %



Flows for joint modeling

o o 1
We see that A is crucial [6]: A=0 A=p A=1
Model \Evaluation Acc T Acc T bpd] Acct bpd |
Coupling 89.77% 87.58% 430 67.62% 3.54
+1 x 1 conv 90.82% 87.96% 4.09 67.38% 3.47
Residual Blocks (full) 91.78% 90.47% 3.62  7032% 3.39
Dense Blocks (full)  92.40% 90.79% 3.49 75.67% 3.31

(a) Hybrid model trained with A = %

47 [6] Perugachi-Diaz, Y., Tomczak, J. M., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurlPS 2021
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(b) Hybrid model trained with A = 1



Flows for joint modeling

. . _ _ i _
We see that A is crucial [6]: A=0 A= 1 A=1
Model \Evaluation Acc T Acc T bpd] Acct bpd |
Coupling 89.77% 87.58% 430 67.62% 3.54
+1 x 1 conv 90.82% 87.96% 4.09 67.38% 3.47

Residual Blocks (full) 91.78%  90.47% 3.62  70.32%  3.39
Dense Blocks (full) 9240% 90.79% 349 75.67% 3.31

RTEORAT T
{x(x,y) = Inp(y[x) + Alnp(x)

This is not the likelihood
function anymore...

(a) Hybrid model trained with A = % (b) Hybrid model trained with A = 1

48 [6] Perugachi-Diaz, Y., Tomczak, J. M., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurlPS 2021 VU %
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e \Variational Auto-Encoders (VAEs) constitute a broad class of models.
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Variational Auto-Encoders

e \Variational Auto-Encoders (VAEs) constitute a broad class of models.

e But they fail to learn a representation [11].
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[11] Hibotter, J. F., Lanillos, P., & Tomczak, J. M. (2021). Training Deep Spiking Auto-encoders without Bursting or Dying Neurons through
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Variational Auto-Encoders

e \Variational Auto-Encoders (VAEs) constitute a broad class of models.

e But they fail to learn a representation [11].
® |tis possible to introduce geometrical perspective to VAEs:
— Hyperspherical VAEs [12], Riemaniann manifolds [13], Lie groups [14]

e Hierarchical latent structure is crucial for learning powerful VAEs.

[11] Hibotter, J. F., Lanillos, P., & Tomczak, J. M. (2021). Training Deep Spiking Auto-encoders without Bursting or Dying Neurons through
Regularization. arXiv preprint arXiv:2109.11045.
[12] Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical variational auto-encoders. UAI 2018

[13] Arvanitidis, G., Hauberg, S., & Scholkopf, B. (2021). Geometrically Enriched Latent Spaces. AISTATS 2021
51 [14] Falorsi, L., de Haan, P., Davidson, T. R., & Forré, P. (2019). Reparameterizing distributions on lie groups. AISTATS 2019 VU
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Hierarchical VAEs

A proper parameterization of hierarchical VAEs is important to get SOTA.
So called top-down VAEs:
— ResNet VAE [15], Ladder VAE [16], BIVA [17], NVAE [18], vdVAE [19]

[15] Kingma, D. P., Salimans, T., Jozefowicz, R.,
Chen, X., Sutskever, I., & Welling, M. (2016).
Improved variational inference with inverse
autoregressive flow. NeurIPS 2016

[16] Senderby, C. K., Raiko, T., Maalge, L.,
Senderby, S. K., & Winther, O. (2016). Ladder
variational autoencoders. NeurlPS 2016

[17] Maalge, L., Fraccaro, M., Liévin, V., &
Winther, O. (2019). BIVA: A Very Deep
Hierarchy of Latent Variables for Generative
Modeling. NeurlIPS 2019

[18] Vahdat, A., & Kautz, J. (2020). Nvae: A
deep hierarchical variational autoencoder.
NeurlPS 2020

[19] Child, R. (2020). Very Deep VAEs
Generalize Autoregressive Models and Can
Outperform Them on Images. ICLR 2020

y VU¥
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VAEs for joint modeling

However, still, using VAEs for modeling the marginal and sharing the
encoder with the predictor requires applying a fudge factor.

The objective can take the following form [20, 21]:

la(X,y) = aEy(zx) [Inp(y|z)] + ELBO(x)

The encoder is shared with the classifier.

[20] Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with deep generative models. NeurlPS 2014 V
53 [21] llse, M., Tomczak, J. M., Louizos, C., & Welling, M. (2020). DIVA: Domain invariant variational autoencoders. MIDL 2020 VU /-3



VAEs for joint modeling

However, still, using VAEs for modeling the marginal and sharing the
encoder with the predictor requires applying a fudge factor.

The objective can take the following form [20, 21]:

la(X,y) = aEy(zx) [Inp(y|z)] + ELBO(x)

The encoder is shared with the classifier.

This is not the likelihood function anymore...

[20] Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with deep generative models. NeurlPS 2014 V
54 [21] llse, M., Tomczak, J. M., Louizos, C., & Welling, M. (2020). DIVA: Domain invariant variational autoencoders. MIDL 2020 VU /-3



Energy-based Models

It is unclear for ARMs and EBMs what a representation is.
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Energy-based Models

It is unclear for ARMs and EBMs what a representation is.

However, for EBMs we have [22]: po(y|x) po(x)
Inpo(x,y) = Inpg(y|x) + In p(x) Softmax LogSumExp,
I exp{ N Np(x)[y]} I >, exP{ N Np(x)[yl}
>, exXP{ N No(x)[y]} Zg ? ? ? ? ?N No(x)ly]
= Insoftmax{N Ny (x)[y]} + (LSE,{NNos(x)[y]} — In Z _—
|

56 [22] Grathwohl, W., Wang, K. C., Jacobsen, J. H., Duvenaud, D., Norouzi, M., & Swersky, K. (2020). Your Classifier is Secretly an Energy Based Model VU k
and You Should Treat it Like One. ICLR 2020 b



Energy-based Models

57

It is unclear for ARMs and EBMs what a representation is.

However, for EBMs we have [22]:

Class Model Accuracy% T IST  FID]
Residual Flow 70.3 3.6 46.4

Glow 67.6 392 489

Hybrid IGEBM 49.1 8.3 37.9
JEM p(x|y) factored 30.1 6.36 61.8

JEM (Ours) 92.9 8.76 384

Disc. Wide-Resnet 95.8 N/A  N/A
Gen. SNGAN N/A 859 255
NCSN N/A 891 25.32

[22] Grathwohl, W., Wang, K. C., Jacobsen, J. H., Duvenaud, D., Norouzi, M., & Swersky, K. (2020). Your Classifier is Secretly an Energy Based Model

and You Should Treat it Like One. ICLR 2020
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Energy-based Models

It is unclear for ARMs and EBMs what a representation is.

However, for EBMs we have [22]: po(y|x) po(x)
Inpo(x,y) = Inpg(y|x) + In p(x) Softmax LogSumExp,
_ 1 PN No(x)[y]} o >y exp{N Ny (x)[y]}
>, exp{N No(x)[y]} Zo 0 QO OMN
= Insoftmax{N Ny (x)[y]} + (LSE,{NNos(x)[y]} — In Z _—
A single, shared neural net. T
X

The objective is the likelihood function!
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Energy-based Models

It is unclear for ARMs and EBMs what a representation is.

However, for EBMs we have [22]: po(y|x) po(x)
Inpo(x,y) = Inpg(y|x) + In p(x) Softmax LogSumExp,
_ 1 PN No(x)[y]} o >y exp{N Ny (x)[y]}
>, exp{N No(x)[y]} Zo 0 QO OMN
= Insoftmax{N Ny (x)[y]} + (LSE,{NNos(x)[y]} — In Z _—
A single, shared neural net. T
X

The objective is the likelihood function!

But what is the representation here?
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Energy-based Models

It is unclear for ARMs and EBMs what a representation is.

However, for EBMs we have [22]: po(y|x) po(x)
Inpo(x,y) = Inpg(y|x) + In p(x) Softmax LogSumExp,
T exp{ N Np(x)[y]} o >, exP{ N Np(x)[yl}
>, exp{N No(x)[y]} Zo 00 00 ONN

= Insoftmax{N Ny (x)[y]} + (LSE,{NNs(x)[y]} - n Z

/ NNo(X) \

T

logits? X

A single, shared neural net.

The objective is the likelihood function!

But what is the representation here? How to obtain a representation?

60 [22] Grathwohl, W., Wang, K. C., Jacobsen, J. H., Duvenaud, D., Norouzi, M., & Swersky, K. (2020). Your Classifier is Secretly an Energy Based Model VU k
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A quick summary

The likelihood function:
® Potential issues with mixture models (unboundness).
e Fine for discrete distributions.
Marginal models:
Do we really need one?

e For ARMs and EBMs: Unclear what a representation is.

® For VAEs and flows: We don’t know how to use the likelihood function.

Where is the problem?
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Do we need a notion of representation

learning?
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What is a representation?

Learning a joint distribution raises questions:

® |s there something wrong with the likelihood function? Or rather:
e How should we parameterize distributions?

Interestingly, EBMs don’t need to define an explicit representation and they

can use the likelihood function!
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What is a representation?

Learning a joint distribution raises questions:

® |s there something wrong with the likelihood function? Or rather:
e How should we parameterize distributions?

Interestingly, EBMs don’t need to define an explicit representation and they
can use the likelihood function!
So do we really need a representation?

Or maybe we misinterpret the representation?
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Compression

Shannon’s source coding theorem:

The length of a message representing some data is proportional to the

entropy of this data.
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Compression

Shannon’s source coding theorem:

The length of a message representing some data is proportional to the

entropy of this data.
In other words:

Maximizing the model log-likelihood is equivalent to minimizing the

expected number of bits required per message, if the encoder is optimal.
So we want to get p__(x) = pg(x).

. VU¥



Compression

Shannon’s theorem could be read as follows:

. VU¥



Compression

Shannon’s theorem could be read as follows:

— A model maximizing the likelihood function is useful for compression.

. VU¥



Compression

Shannon’s theorem could be read as follows:
— A model maximizing the likelihood function is useful for compression.
— There is no need to define a separate variable to send a message.

A good model p,(x) is all we need! (=

[ VU



Compression

Shannon’s theorem could be read as follows:

— A model maximizing the likelihood function is useful for compression.
— There is no need to define a separate variable to send a message.

A good model p,(x) is all we need! (=

— A message is discrete in nature (i.e., symbols and bits).

., VU¥



Compression

Shannon’s theorem could be read as follows:

— A model maximizing the likelihood function is useful for compression.
— There is no need to define a separate variable to send a message.

A good model p (x) is all we need! (=

— A message is discrete in nature (i.e., symbols and bits).

|"

In information theory we have a “natural” notion of compressed

representation of data. Do we need more?
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Compression

Shannon’s theorem could be read as follows:

— A model maximizing the likelihood function is useful for compression.
— There is no need to define a separate variable to send a message.

A good model p (x) is all we need! (=

— A message is discrete in nature (i.e., symbols and bits).

In information theory we have a “natural” notion of compressed
representation of data. Do we need more?

. L o
y But then, how to use compression in the context of prediction? VU %?
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Questions:

1. Isthe likelihood function enough?
a. If NO, then what priors/regularizers are important? (Explicit)

b. If YES, what parameterizations are important? (Implicit)
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Questions:

1. Isthe likelihood function enough?
What would Bayesianists say about it?
a. If NO, then what priors/regularizers are important? (Explicit)

b. If YES, what parameterizations are important? (Implicit)
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Questions:

1. Isthe likelihood function enough?
a. If NO, then what priors/regularizers are important? (Explicit)

b. If YES, what parameterizations are important? (Implicit)
2. How to obtain a representation from EBMs or ARMs?

3. Isthe notion of representation learning even necessary? Is it a different

label for compression?
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Thank you!
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