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q(z|x) is non-trivial (?), e.g., 
N(0, 1)

z is useful for the predictor 
= low error (?)

what about unsupervised 
learning?
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flexible parameterization
of distributions
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Deep Generative Modeling
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After [2]:

Generative modeling: formulating a model of the joint distribution,

Discriminative modeling: formulating a model of the conditional,  

Why do we need generative modeling?
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After [2]:

Generative modeling: formulating a model of the joint distribution,

Discriminative modeling: formulating a model of the conditional,  

Deep Generative Modeling

20 Considering the joint could be crucial for decision making!
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Deep Generative Modeling
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Parameterized by deep neural nets Various models:
→ Deep Latent Variable Models (e.g., 
VAEs, diffusion models)
→ Autoregressive Models (ARMs)
→ Energy-based Models (EBMs)
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Deep Generative Modeling
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We consider the joint distribution factorized as follows:

Then the log-likelihood function (assuming iid) takes the following form:

Deep Generative Modeling
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1. Are there any problems with this objective?

2. Is this objective appropriate for representation learning?



25

The likelihood function



Let us take a look at the objective again (the log-likelihood function):
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→ If we take Gaussians, then we get an unbounded likelihood [3]!
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Problems with the likelihood function

[3] Mattei, P. A., & Frellsen, J. (2018). Leveraging the exact likelihood of deep latent variable models. NeurIPS (pp. 3859-3870).

Solution: add a constant diagonal matrix 
to the decoder’s covariance matrix.



Let us take a look at the objective again (the log-likelihood function):

The conditional log-likelihood function is typically fine!

A potential danger with the marginal log-likelihood function:

→ Consider a latent variable model:

→ If we take Gaussians, then we get an unbounded likelihood [3]!

→ If we take Bernoullis (or Categoricals), it’s fine [3]!

31

Problems with the likelihood function

[3] Mattei, P. A., & Frellsen, J. (2018). Leveraging the exact likelihood of deep latent variable models. NeurIPS (pp. 3859-3870).
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The likelihood function for representation learning

The likelihood-based approach is equivalent to calculating a match between 
a model and the empirical distribution according to the KL-divergence.



Is then the likelihood function well-suited for representation learning?
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The likelihood function for representation learning

Implicit (model inductive biases) Explicit (objective inductive biases)

● smoothness: x ≈ y implies f(x) ≈ f(y)

● multiple explanatory factors

● a hierarchy of explanatory factors

● geometrical properties (manifolds)

● factors explain x and help to predict y

● (?) spatial/temporal coherence

● (?) simplicity of factor dependencies

● smoothness: x ≈ y implies f(x) ≈ f(y)

● sparsity

● geometrical properties (manifolds)

● (?) spatial/temporal coherence

● (?) generalizability (shared factors 

across tasks)

The likelihood function alone does not help representation learning explicitly.



Is then the likelihood function well-suited for representation learning?
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The likelihood function for representation learning

[4] Huszár, F. (2017). Is maximum likelihood useful for representation learning? 
https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/


Is then the likelihood function well-suited for representation learning?

Three scenarios:

36

The likelihood function for representation learning

[4] Huszár, F. (2017). Is maximum likelihood useful for representation learning? 
https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

The likelihood function has no incentive to learn useful representations.

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/


Is then the likelihood function well-suited for representation learning?

Three scenarios:

37

The likelihood function for representation learning

[4] Huszár, F. (2017). Is maximum likelihood useful for representation learning? 
https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

The likelihood function has no incentive to learn useful representations.

But is it bad? Maybe we should focus on the parameterization instead!

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/


Is then the likelihood function well-suited for representation learning?
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The likelihood function for representation learning

Implicit (model inductive biases) Explicit (objective inductive biases)

● smoothness: x ≈ y implies f(x) ≈ f(y)

● multiple explanatory factors

● a hierarchy of explanatory factors

● geometrical properties (manifolds)

● factors explain x and help to predict y

● (?) spatial/temporal coherence

● (?) simplicity of factor dependencies

● smoothness: x ≈ y implies f(x) ≈ f(y)

● sparsity

● geometrical properties (manifolds)

● (?) spatial/temporal coherence

● (?) generalizability (shared factors 

across tasks)

The likelihood function is a general objective and the parameterization is key?
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How to model the marginal 
distribution? What parameterization?
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● Latent Variables Models:

● Flow-based models:

● Autoregressive models:

● Energy-based models:
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Classes of DGMs

Before we delve into the parameterizations, let us recap the DGMs:

● Latent Variables Models:

● Flow-based models:

● Autoregressive models:

● Energy-based models:

Latent variables = representation

What is a representation here?
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In flows, we need either powerful invertible neural networks, e.g.:

→ ResNets [5] or DenseNets [6] with constraints (less than 1-Lipschitz).

or/and invertible structure with easily computable Jacobian, e.g.:

→ Householder flows [7], Sylvester flows [8]

→ Convolution Exponential + Sylvester flows [9]
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Importance of parameterization in Flows

[5] Chen, R. T., Behrmann, J., Duvenaud, D. K., & Jacobsen, J. H. (2019). Residual Flows for Invertible Generative Modeling. NeurIPS 2019
[6] Perugachi-Diaz, Y., Tomczak, J. M., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS 2021
[7] Tomczak, J. M., & Welling, M. (2016). Improving variational auto-encoders using householder flow. Bayesian Deep Learing @ NeurIPS 2016
[8] van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. Sylvester Normalizing Flows for Variational Inference. UAI 2018
[9] Hoogeboom, E., Garcia Satorras, V., Tomczak, J., & Welling, M. (2020). The Convolution Exponential and Generalized Sylvester Flows. NeurIPS 2020



We can use flows to formulate a joint distribution [10]:

● The marginal distribution is a flow-based model.

● The mapping from x to z is shared with a predictor.

● We need to change the objective function:

45
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[10] Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Hybrid models with deep and invertible features. ICML 2019



We can use flows to formulate a joint distribution [10]:

● The marginal distribution is a flow-based model.

● The mapping from x to z is shared with a predictor.

● We need to change the objective function:
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Flows for joint modeling

[10] Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Hybrid models with deep and invertible features. ICML 2019

The gradient flow is uneven from the conditional and the marginal.



We see that λ is crucial [6]:
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We see that λ is crucial [6]:

48

Flows for joint modeling

[6] Perugachi-Diaz, Y., Tomczak, J. M., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS 2021

This is not the likelihood 
function anymore...
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● Variational Auto-Encoders (VAEs) constitute a broad class of models.

● But they fail to learn a representation [11].

● It is possible to introduce geometrical perspective to VAEs:

→ Hyperspherical VAEs [12], Riemaniann manifolds [13], Lie groups [14]

● Hierarchical latent structure is crucial for learning powerful VAEs.
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Variational Auto-Encoders
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[12] Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical variational auto-encoders. UAI 2018
[13] Arvanitidis, G., Hauberg, S., & Schölkopf, B. (2021). Geometrically Enriched Latent Spaces. AISTATS 2021
[14] Falorsi, L., de Haan, P., Davidson, T. R., & Forré, P. (2019). Reparameterizing distributions on lie groups. AISTATS 2019



A proper parameterization of hierarchical VAEs is important to get SOTA.

So called top-down VAEs:

→ ResNet VAE [15], Ladder VAE [16], BIVA [17], NVAE [18], vdVAE [19]
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Hierarchical VAEs

[15] Kingma, D. P., Salimans, T., Jozefowicz, R., 
Chen, X., Sutskever, I., & Welling, M. (2016). 
Improved variational inference with inverse 
autoregressive flow. NeurIPS 2016
[16] Sønderby, C. K., Raiko, T., Maaløe, L., 
Sønderby, S. K., & Winther, O. (2016). Ladder 
variational autoencoders. NeurIPS 2016
[17] Maaløe, L., Fraccaro, M., Liévin, V., & 
Winther, O. (2019). BIVA: A Very Deep 
Hierarchy of Latent Variables for Generative 
Modeling. NeurIPS 2019
[18] Vahdat, A., & Kautz, J. (2020). Nvae: A 
deep hierarchical variational autoencoder. 
NeurIPS 2020
[19] Child, R. (2020). Very Deep VAEs 
Generalize Autoregressive Models and Can 
Outperform Them on Images. ICLR 2020



However, still, using VAEs for modeling the marginal and sharing the 

encoder with the predictor requires applying a fudge factor.

The objective can take the following form [20, 21]:

The encoder is shared with the classifier.
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It is unclear for ARMs and EBMs what a representation is.

However, for EBMs we have [22]:
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Energy-based Models

[22] Grathwohl, W., Wang, K. C., Jacobsen, J. H., Duvenaud, D., Norouzi, M., & Swersky, K. (2020). Your Classifier is Secretly an Energy Based Model 
and You Should Treat it Like One. ICLR 2020

A single, shared neural net.

The objective is the likelihood function!

But what is the representation here?

logits?

How to obtain a representation?



The likelihood function:

● Potential issues with mixture models (unboundness).

● Fine for discrete distributions.
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The likelihood function:

● Potential issues with mixture models (unboundness).

● Fine for discrete distributions.

Marginal models:

● For ARMs and EBMs: Unclear what a representation is.

● For VAEs and flows: We don’t know how to use the likelihood function.
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The likelihood function:

● Potential issues with mixture models (unboundness).

● Fine for discrete distributions.

Marginal models:

● For ARMs and EBMs: Unclear what a representation is.

● For VAEs and flows: We don’t know how to use the likelihood function.
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A quick summary

Do we really need one?

Where is the problem?
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Do we need a notion of representation 
learning?



Learning a joint distribution raises questions:

● Is there something wrong with the likelihood function? Or rather:

● How should we parameterize distributions?

Interestingly, EBMs don’t need to define an explicit representation and they 

can use the likelihood function!
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Learning a joint distribution raises questions:

● Is there something wrong with the likelihood function? Or rather:

● How should we parameterize distributions?

Interestingly, EBMs don’t need to define an explicit representation and they 

can use the likelihood function!

So do we really need a representation? 

Or maybe we misinterpret the representation?
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What is a representation?



Shannon’s source coding theorem:

The length of a message representing some data is proportional to the 

entropy of this data.
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Shannon’s source coding theorem:

The length of a message representing some data is proportional to the 

entropy of this data.

In other words:

Maximizing the model log-likelihood is equivalent to minimizing the 

expected number of bits required per message, if the encoder is optimal. 

So we want to get p
real

(x) ≈ pθ(x).
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Shannon’s theorem could be read as follows:
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A good model pθ(x) is all we need! 😊

71

Compression



Shannon’s theorem could be read as follows:

→ A model maximizing the likelihood function is useful for compression.

→ There is no need to define a separate variable to send a message.

A good model pθ(x) is all we need! 😊
→ A message is discrete in nature (i.e., symbols and bits).

72

Compression



Shannon’s theorem could be read as follows:

→ A model maximizing the likelihood function is useful for compression.

→ There is no need to define a separate variable to send a message.

A good model pθ(x) is all we need! 😊
→ A message is discrete in nature (i.e., symbols and bits).

In information theory we have a “natural” notion of compressed 

representation of data. Do we need more?

73

Compression



Shannon’s theorem could be read as follows:

→ A model maximizing the likelihood function is useful for compression.

→ There is no need to define a separate variable to send a message.

A good model pθ(x) is all we need! 😊
→ A message is discrete in nature (i.e., symbols and bits).

In information theory we have a “natural” notion of compressed 

representation of data. Do we need more?
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Compression

But then, how to use compression in the context of prediction?
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Questions
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1. Is the likelihood function enough? 

a. If NO, then what priors/regularizers are important? (Explicit)

b. If YES, what parameterizations are important? (Implicit)

Questions:
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1. Is the likelihood function enough? 

a. If NO, then what priors/regularizers are important? (Explicit)

b. If YES, what parameterizations are important? (Implicit)

Questions:

What would Bayesianists say about it?
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1. Is the likelihood function enough? 

a. If NO, then what priors/regularizers are important? (Explicit)

b. If YES, what parameterizations are important? (Implicit)

2. How to obtain a representation from EBMs or ARMs?

Questions:
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1. Is the likelihood function enough? 

a. If NO, then what priors/regularizers are important? (Explicit)

b. If YES, what parameterizations are important? (Implicit)

2. How to obtain a representation from EBMs or ARMs?

3. Is the notion of representation learning even necessary? Is it a different 

label for compression?

Questions:
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Thank you!


