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Molecule generation
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Problem

Goal: Generate novel molecules
Constraints: Molecules that have certain desirable properties

Search space: ~10°°
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Problem

Goal: Generate novel molecules

Constraints: Molecules that have certain desirable properties

Search space: ~10°°

Representation of molecules:
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SMILES

Molecular graph

Molecular graph
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Molecule Generation with Joint VAEs
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Gomez-Bombarelli et al., ACS Central Science, 2018

"Automatic chemical design using a data-driven continuous representation of molecules.”
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Molecule Generation with Joint VAEs
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Molecule Generation with Joint VAEs
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Molecule Generation with Joint VAEs
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Gomez-Bombarelli et al., ACS Central Science, 2018
"Automatic chemical design using a data-driven continuous representation of molecules.”

Inp(x,y) = Inp(y[x) + Inp(x)



Molecule Generation with GANs

Adjacency tensor A Sampled A Graph

Discriminator

. { '8 Ty Y

M
Generator

—
/\ 'x\..__ M ___,-"II -..\h_ N _/ '-.\.__
Annotation matrix X Sampled X Molecule
z ~p(z) s '“\.,I g '“\.,I e o '“\.,I Reward network
~ [ GCN 0/1
| | | | S
\_ T _,»""I \_ T _,»""I \_ _,»""I

Objective: adversarial loss + RL

L(O) = A-Lygan(0) + (1 —A) - Lg,(B)
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Molecule Generation with GANs
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Molecule Generation with Diffusion Models
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Molecule Generation with Diffusion Models

Denoising Molecule Diffusion
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Jointformer:
A shared model for
generating and predicting



Molecule generation with joint models

We want to generate molecules with specific properties!

A possible solution: training a joint model
Inp(x,y) = Inp(y[x) + Inp(x)

How to do that?



Molecule generation with joint models

We want to generate molecules with specific properties!

A possible solution: training a joint model

Inp(x,y) = Inp(y|x) + Inp(x)

How to do that?

We need to ensure that we can generate molecules AND predict properties!

Ideally, we would like to have a single model that has it all!



Jointformer for molecules

We propose to use a single, shared Jointformer:
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Training of Transformers

Standard training procedure:

: Training with the masked loss over tokens with masking

(m~p(m)):
L(O) = Z (Z Inp(xpqlm O Xy _g; 9)>
d

n

ATTRs: Training a predictor p(y|x) (e.g., properties) or a decoder-
transformer (causal=True) p(x) using the likelihood function:

L(6) = XnInp(ynlxn; 6,¢) OR L(8) = Xnlnp(xy; 6)
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Training of Transformers

Standard training procedure:

: Training with the masked loss over tokens with masking

(m~p(m)):
L(O) = Z (Z Inp(xpqlm O Xy _g; 9)>
d

n

ETTRs: Training a predictor p(y|X) (e.g., properties) (causal=True) using
the penalized likelihood function with In p(x) :

L(©O) = ) 1np(nlxy; 0,8) + 4 ) Inp(xn; 6)

Strongly predictive but very poor generative



Training of Transformers

Standard training procedure:

IR e Training p(X) using the masked loss over tokens with masking
(m~p(m)) as a penalty:

L(6) = Z (z Inp(xpglm O xp, _g;0) + Inp(Xy; 3))
d

n

ATTRs: Training a predictor p(y|x) (e.g., properties) or a decoder-
transformer (causal=True) p(x) using the likelihood function:

L(6) = XnInp(ynlxn; 6,¢) OR L(8) = Xnlnp(xy; 6)



Training of Transformers

Standard training procedure:

IR e Training p(X) using the masked loss over tokens with masking
(m~p(m)) as a penalty:

L(6) = Z (z Inp(xpglm O xp, _g;0) + Inp(Xy; H))
d

n

ATTRs: Training a predictor p(y|x) (e.g., properties) or a decoder-
transformer (causal=True) p(x) using the likelihood function:

L(6) = XnInp(ynlxn; 6,¢) OR L(8) = Xnlnp(xy; 6)

EITHER predictive OR generative



Training of Jointformers

We propose the following modified training procedure:

[T e Training p(X) using causal=True and the masked over tokens
(causal=False) with masking (m~p(m)):

L(6) = Z (z Inp(xpglm O xp, _g;0) + Inp(Xy; H))
d

n

ATTRar: Training a predictor p(y|x) (causal=False) and a decoder-
transformer (causal=True) p(x):

L(®) = ) (np(nlxy; 6, ) +Inp(xn; 6))

n



Training of Jointformers

We propose the following modified training procedure:

[T e Training p(X) using causal=True and the masked over tokens
(causal=False) with masking (m~p(m)):

L©) = ) (z Inp(xalm © Xp_a; 0) + In p(Xy; 9))

" Enforcing good representation learning!

ATTRar: Training a predictor p(y|x) (causal=False) and a decoder-
transformer (causal=True) p(x):

L(®) = ) (np(nlxy; 6, ) +Inp(xn; 6))

Ensuring both generative and predictive



Generative & Predictive capabilities of Jointformers

The performance of our Jointformer:

Table 1. Generative performance of pre-trained JOINTFORMER, as compared to models based on graph or SMILES molecular representa-
tions on GuacaMol distribution learning benchmarks.

MoL. REPR. MODEL FCD (1) KL Div (1) VALIDITY (1)
JT-VAE (JIN ET AL., 2019) 0.76 0.94 1.0

GRAPH-BASED MOLER (MAZIARZ ET AL., 2022) 0.78 0.98 1.0
MAGNET (HETZEL ET AL., 2023) 0.73 0.92 1.0
MICAM (GENG ET AL., 2023) 0.73 0.99 1.0
VAE (KINGMA & WELLING, 2013) 0.86 0.98 0.87
LSTM (GERS & SCHMIDHUBER, 2001) 0.91 0.99 0.96

SMILES MOLGPT (BAGAL ET AL., 2022A) 0.91 0.99 0.98
JOINTFORMER (OURS) 0.93 1.0 0.99

Pre-trained without labels! But with the masked loss and the generative loss.



Generative & Predictive capabilities of Jointformers

The performance of our Jointformer:

Table 2. Ablation study demonstrating the benefits of the pre-training and training objectives and the hybrid attention on the joint generative
and predictive performance of JOINTFORMER. We report the mean and standard deviation across seven GuacaMol and three MoleculeNet

tasks. T. - transformer.

_ Pre-training , Training Guacamol MoleculeNet
Model loss Attention g FCD (1) RMSE (/) RMSE (/)
GENERATIVE T. Generative (Eq. 4) 0.87 4+ 0.00 N/A N/A
PREDICTIVE T. . o Predictive (Eq. 5) 0.02 £0.06 0.044 £ 0.013 0.720 £ 0.141
JOINT T. Generative (Eq. 4)  Causal — y5i5¢ (Eq. 2) 0.8540.00 0.0594 0.020 0.740 £ 0.172
JOINT T., WEIGHTED Joint, weighted (Eq. 3) 0.71 £0.02 0.044 4+ 0.013  0.710 £ 0.167

Reconstructive- , , ) , ) L o
JOINTFORMER Hybrid Joint (Eq. 2) 0.84 £0.01 0.039£0.009 0.716 £ 0.182

generative (Eq. 13)

It is important to add the masked loss to pre-training!



Generative & Predictive capabilities of Jointformers

The performance of our Jointformer:

Table 2. Ablation study demonstrating the benefits of the pre-training and training objectives and the hybrid attention on the joint generative
and predictive performance of JOINTFORMER. We report the mean and standard deviation across seven GuacaMol and three MoleculeNet

tasks. T. - transformer.

_ Pre-training , Training Guacamol MoleculeNet
Model loss Attention g FCD (1) RMSE (/) RMSE (/)
GENERATIVE T. Generative (Eq. 4) 0.87 4+ 0.00 N/A N/A
PREDICTIVE T. . o Predictive (Eq. 5) 0.02 £0.06 0.044 £ 0.013 0.720 £ 0.141
JOINT T. Generative (Eq. 4)  Causal — y5i5¢ (Eq. 2) 0.8540.00 0.0594 0.020 0.740 £ 0.172
JOINT T., WEIGHTED Joint, weighted (Eq. 3) 0.71 £0.02 0.044 4+ 0.013  0.710 £ 0.167

Reconstructive- , : ) , - : B o
JOINTFORMER Hybrid Joint (Eq. 2) 0.84 = 0.01  0.039 4 0.009  0.716 & 0.182

generative (Eq. 13)

It seems possible to train a powerful predictor with joint likelihood!

But “no-free-lunch”: the generative performance drops a bit.



Generative & Predictive capabilities of Jointformers

The performance of our Jointformer:

Table 4. Predictive performance of purely predictive and joint models across three molecular property prediction tasks from the Molecu-
leNet benchmark. JOINTFORMER outperforms other joint models across all tasks and achieves the best performance on the FreeSolv task,
as measured by RMSE.

CLASS MODEL ESOL () FREESOLvV (|) LIPOPHILICITY ({)
XGBoOOST (CHEN & GUESTRIN, 2016) 0.990 1.740 0.799
MPNN (GILMER ET AL., 2017) 0.580 1.150 0.719

PRED.  _MPNN (YANG ET AL., 2019) 0.555 1.075 0.555
MOLBERT (FABIAN ET AL., 2020) 0.531 0.948 0.561
CHEMFORMER (IRWIN ET AL., 2022) 0.630 1.230 0.600
REGRESSION TRANSFORMER (BORN & MANICA, 2023) 0.730 1.340 0.740

JOINT  JINTFORMER (OURS) 0.571 0.914 0.573

Our Jointformer can generate, all other methods can’t!
Overall, we are always in top-3!
We beat our direct competitor (no likelihood-based training).



Generative & Predictive capabilities of Jointformers

The performance of our Jointformer:

Table 8. Molecular properties (valhid SMILES, molecules passing a set of property filters, log P, molecular weight, QED and synthetic
accessibility) of 10000 molecules sampled from the test set of CHeMBL data set, MolGPT and Jointformer.

DATA “oVALID (1) SoPass (1) LOGP MW QLED SA

GuacaMoL (BROWN ET AL, 2019) 1) o 4o 005 39500 = 1L.0% 056 £ 0,00  2.90 = 0.01
MOLGPT (BAGAL ET AL., 2022) I ol 2 oo x004 401,32 1.11 056 £ 000 2590 = .01
JOINTFORMER (IZDEBSKI ET AL., 2024) LMD g U6d =004 39954 1.11  Ooo 000 284 = (.01

Molecular properties of our approach are in line with test data (GuacaMol).
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Generative & Predictive capabilities of Jointformers

The performance of our Jointformer:

Table 9. Generative performance of pre-trained JOINTFORMER, as compared to models based on graph or SMILES molecular representa-
nons on MOSES distnbution learming benchmarks.

REPR. MoODEL INTDIV (1) LoGP(]l) SA(]l) QEDI(])
JT-VAE (JIN ET AL., 2019) (.86 (.28 (.34 (.01
GRAPHAF (SHI ET AL., 2020) 0.93 (.41 ().88 0.22

GRAPH  MOLER (MAZIARZ ET AL.. 2022) (.87 0.13 0.06 0.01
MAGNET (HETZEL ET aL., 2023) (.88 (.22 (). (.01
CHARVAE (GOMEZ-BOMBARELLI ET AL., 2018) ().85 (.87 (.45 (.06

SMILES LSTM (SEGLER ET aL., 2018) (.87 (.12 0.04 0. 040
JOINTFORMER (OURS) (.86 0.07 (). (.01

Jointformer achieves on par performance to SOTA purely generative models.

lzdebski, Weglarz-Tomczak, Szczurek, Tomczak, 2024
“Joint Molecule Generation and Property Prediction with Jointformer”
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Conditional sampling from Jointformers

Distribution of properties sampled conditionally:

X-axis: property value, y-axis: counts

12 40&
8
20 \
4 &
00 01 02 03 04 05 0.0 0.1 0.2 0.3 0.4 00 01 02 03 04 05
Perindopril MPO Sitagliptin MPO Zaleplon MPO

1 Jointformer [ Generative T. [ Pre-Trained T.

lzdebski, Weglarz-Tomczak, Szczurek, Tomczak, 2024
“Joint Molecule Generation and Property Prediction with Jointformer”



Conditional sampling from Jointformers

Distribution of properties sampled conditionally:

X-axis: property value, y-axis: counts
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Conditional sampling from Jointformers

Distribution of properties sampled conditionally:

X-axis: property value, y-axis: counts
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Conditional sampling from Jointformers

Distribution of properties sampled conditionally:

X-axis: property value, y-axis: counts

T
12 40 |
|
8 |
20 |

. AT
ah LK )

N\ \_E_ N "“«H_\x ______ l'\% -

00 01 02 03 04 05 0.0

Perindopril MPO

0.1 0.2
Sitagliptin MPO

0.3

12

8
—
0.4 00 0.1

Jointformer

Generative T.

Pre-Trained T.

BUT our Jointformer samples BEST molecules!

02 03 04
Zaleplon MPO

0.5




Jointformers

We can learn a joint transformer by maximizing the joint log-likelihood
function, ...

... but we need a penalty term to have a strong predictive performance.

... and we can have a single model (i.e., generating + predicting)!
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Summary

. .. : EVidence
Representation Objective Constraints Tractability
VAES SMILES ELBO Prop-erty "
Graphs predictor
GANs Graphs Adversarial loss RL loss &
Diffusion Graphs + 3D ELBO Prop-erty "
models predictor

Jointformer SMILES Joint Likelihood - v
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Challenges

* Trustworthiness To what extent can we trust generated molecules?

Do GenAl models “understand” quantum chemistry?
Can we add knowledge to these models?

Do we need something to go beyond training data?

Search englne Generatlve Model

A '
Y 9
o)

Answer

—_—

Questlon

Knowledge Data base
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Challenges

 Trustworthiness

e Structure-based Molecule Generation
 Affinity prediction

* Molecular docking

Decoding é

* Lead optimization 4 T — — |
' CC1=CCN2C(C3=C(IC@@H)2

CA=CC=C(CNIC=C4)N(C5CCCCH)
1D protein representation C(CC(N(C)C)C)=N3)=0)=CC=C1




Challenges

_|_
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° 1 y

 Trustworthiness " 2
e Structure-based Molecule Generation Wﬁtef/sjdy\%ss Wﬁt{ \+

 Affinity prediction ,P@ Qﬁ

* Molecular docking /\ /\

imi i Stud Pa Stud Pas
* Lead optimization y  Pass y -

* Further tractability of generative models for molecules

* Developing models with MAR, COND and MAP tractability



Take-aways



Take-aways

Generative Al has shown a great
potential for molecule generation!

Many open research questions
(including tractability!)

Trustworthiness: Incorporating
knowledge (quantum chemistry) into
Generative Al for molecular modeling

(Always remember about shameless self-promotion)



Thank you!
Questions?

Contact: j.m.tomczak@tue.nl
imk.tomczak@gmail.com

Generativ/e

Generative Al Group: https://generativeai-tue.github.io/

iimsCcerrdam
il NolutGions

Amsterdam Al Solutions: https://amsterdamaisolutions.com/
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