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If you are interested in going deeper into deep generative 
modeling, please take a look at my blog: [Blog] 

- Intro: [Link] 

- ARMs: [Link] 

- Flows: [Link], [Link] 

- VAEs: [Link] 

- Hybrid modeling: TBD

BLOG ABOUT DEEP GENERATIVE MODELING
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https://jmtomczak.github.io/blog.html
https://jmtomczak.github.io/blog/1/1_introduction.html
https://jmtomczak.github.io/blog/2/2_ARM.html
https://jmtomczak.github.io/blog/3/3_flows.html
https://jmtomczak.github.io/blog/5/5_IDF.html
https://jmtomczak.github.io/blog/4/4_VAE.html


Let’s assume we have a perfectly trained neural net. 
What happens if we add noise to an image? 
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Let’s assume we have a perfectly trained neural net. 
What happens if we add noise to an image? 

It may fail completely…
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Let’s assume we have a perfectly trained neural net. 
What happens if we add (adversarial) noise to an image? 

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

6 S. Fort, “Pixels still beat text: Attacking the OpenAI CLIP model with text patches and adversarial pixel perturbations”, [Link]

https://stanislavfort.github.io/2021/03/05/OpenAI_CLIP_stickers_and_adversarial_examples.html


Let’s assume we have a perfectly trained neural net. 
What happens if we add (adversarial) noise to an image? 

It fails completely…
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Let’s assume we have a perfectly trained neural net. 
What happens if we add (adversarial) noise to an image? 
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8 A. Kuzina, M. Welling, J.M. Tomczak, “Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks”, [Link]

+

Reference Noise from 
targets Reconstruction

https://arxiv.org/abs/2103.06701
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We clearly see that training a neural 
network (i.e., a conditional distribution): 

 

is not enough!  

p(y |x) = softmax (NN(x))

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

10



We clearly see that training a neural 
network (i.e., a conditional distribution): 

 

is not enough!  

What can we do then? 

Or, how to modify the wrong certainty?

p(y |x) = softmax (NN(x))
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Thus, learning the conditional is a part of the story!
How can we learn p(x)?
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+ Energy-based models

+ Diffusion models
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We are interested in modeling 

 

where  is an RGB image (for instance). 

p(x)

x ∈ {0,1,...,255}D×3
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We are interested in modeling 

 

where  is an RGB image (for instance). 

We can use the product rule: 

 

where 

p(x)

x ∈ {0,1,...,255}D×3

p(x) = p(x1)
D

∏
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤
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Example:
p(x) = p(x1)p(x2 |x1)p(x3 |x1, x2)



We are interested in modeling 

 

where  is an RGB image (for instance). 

We can use the product rule: 

 

where 

p(x)

x ∈ {0,1,...,255}D×3

p(x) = p(x1)
D

∏
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤
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Training objective:

ln p(x) = ln p(x1) +
D

∑
d=2

ln p(xd |x<d)



Question: How we can model the conditionals  efficiently? p(xd |x<d)
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Approach 1: Finite memory

p(xd |x<d)
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Limited dependencies!
How many we should take?

Easy!



Question: How we can model the conditionals  efficiently? 

Approach 2: Long-range memory with RNNs

p(xd |x<d)
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Question: How we can model the conditionals  efficiently? 

Approach 2: Long-range memory with RNNs

p(xd |x<d)
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Sequential -> slow
Vanishing gradient problem

Easy!
Long-range dependencies!



Question: How we can model the conditionals  efficiently? 

Approach 3: Long-range memory with CNNs

p(xd |x<d)
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Question: How we can model the conditionals  efficiently? 

Approach 3: Long-range memory with CNNs

p(xd |x<d)

AUTOREGRESSIVE MODELS (ARMS)
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Easy!
Long-range dependencies!
No training issues!

Slow generation



AUTOREGRESSIVE MODELS (ARMS)
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Samples from a PixelCNN
Chen, Xi, et al. "Pixelsnail: An improved autoregressive generative model." ICML 2018
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Let us consider a simple example. 

FLOWS (FLOW-BASED MODELS)

34



Let us consider a simple example. 

We have a random variable  with . 

We are interested in a distribution of . 

z ∈ ℝ π(z) = 𝒩(z |0,1)

x = 0.75z + 1
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Let us consider a simple example. 

We have a random variable  with . 

We are interested in a distribution of . 

What is the answer?
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x = 0.75z + 1

FLOWS (FLOW-BASED MODELS)

36



Let us consider a simple example. 

We have a random variable  with . 

We are interested in a distribution of . 

What is the answer? ! 

z ∈ ℝ π(z) = 𝒩(z |0,1)

x = 0.75z + 1

𝒩(x |1,0.75)
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Let us consider a simple example. 

We have a random variable  with . 

We are interested in a distribution of . 

What is the answer? ! 

How can we calculate that? Through the change of variables formula: 

z ∈ ℝ π(z) = 𝒩(z |0,1)

x = 0.75z + 1

𝒩(x |1,0.75)

p(x) = π (z = f −1(x)) ∂f −1(x)
∂x
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Change of volume
(Jacobian)



We change a random variable x to another random variable z using 
invertible transformations, :x, z ∈ ℝD
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We change a random variable x to another random variable z using 
invertible transformations, :x, z ∈ ℝD
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p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Simple distribution Complex distribution



We change a random variable x to another random variable z using 
invertible transformations, :x, z ∈ ℝD
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p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Known, e.g., Gaussian



We change a random variable x to another random variable z using 
invertible transformations, :x, z ∈ ℝD
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p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Jacobian must be tractable



We change a random variable x to another random variable z using 
invertible transformations, :x, z ∈ ℝD
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p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Invertible neural networks!



We change a random variable x to another random variable z using 
invertible transformations, : 

Training objective:

x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)
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p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

ln p(x) = ln π (z0 = f −1(x)) −
K

∑
i=1

ln Jfi(zi−1)



Two main components 
1) Coupling layer: 

 
 

is invertible by design: 
  

 

2) Permutation layer

ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa)

xb = (yb − t(ya)) ⊙ exp (−s(ya))
xa = ya

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS
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det(J) =
D−d

∏
j=1

exp (s (xa))j
= exp

D−d

∑
j=1

s (xa)j

Jacobian is tractable! 

det(J) = 1
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A: Forward pass. B: Inverse pass.
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Let’s consider a latent variable 
model where we distinguish: 

• latent variables   

• observable variables  

Latent variables lie on a  
low-dimensional manifold. 

z ∈ 𝒵M

x ∈ 𝒳D

VARIATIONAL AUTO-ENCODERS
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The objective function:
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1. z ∼ p(z)
2. x ∼ p(x |z)

Generative process:

The objective function:

ln p(x) = ln∫ p(x |z)p(z) dz The integral is intractable…



 

 

 

 

 

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [ p(x |z)p(z)
qϕ(z) ]

≥ 𝔼z∼qϕ(z) ln [ p(x |z)p(z)
qϕ(z) ]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]
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Variational posteriors
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Jensen’s inequality
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Reconstruction error “Regularization” term



 ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]
VARIATIONAL AUTO-ENCODERS

63Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014

ELBO: Evidence Lower Bound



 

We consider amortized inference:  

In other words, a single parameterization for each new input x. 

ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]
qϕ(z |x)
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In other words, a single parameterization for each new input x. 

Moreover, we use reparameterization trick:
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Every Gaussian variable could be defined as:

where 
z = μ + σ ⋅ ε

ε ∼ 𝒩(0,1)
Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014
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It reduces the variance of the gradients.
It allows to get randomness outside z.
z = μ + σ ⋅ ε
Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014



VARIATIONAL AUTO-ENCODERS

67Child, R. "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images." ICLR 2021

Generations Very Deep VAE



VARIATIONAL AUTO-ENCODERS

68Gatopoulos, I., and Tomczak, J.M., "Self-Supervised Variational Auto-Encoders." arXiv preprint arXiv:2010.02014 (2020).

Generations Hierarchical VAE



• Here: the likelihood-based generative models. 

• We skipped Generative Adversarial Nets & others. 

• Why generative modeling? 

•   

• Important directions: 

•  Better uncertainty quantification 

•  New parameterization (new neural networks) 

•  Out-of-Distribution 

•  Continual learning

p(x, y) = p(y |x) p(x)

CONCLUSION
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