
Jakub M. Tomczak

Introduction to Deep Generative
Modeling

If you are interested in going deeper into deep generative
modeling, please take a look at my blog: [Blog]

- Intro: [Link]

- ARMs: [Link]

- Flows: [Link], [Link]

- VAEs: [Link]

- Hybrid modeling: TBD

BLOG ABOUT DEEP GENERATIVE MODELING

2

https://jmtomczak.github.io/blog.html
https://jmtomczak.github.io/blog/1/1_introduction.html
https://jmtomczak.github.io/blog/2/2_ARM.html
https://jmtomczak.github.io/blog/3/3_flows.html
https://jmtomczak.github.io/blog/5/5_IDF.html
https://jmtomczak.github.io/blog/4/4_VAE.html

Let’s assume we have a perfectly trained neural net.
What happens if we add noise to an image?

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

3

Let’s assume we have a perfectly trained neural net.
What happens if we add noise to an image?

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

4

Let’s assume we have a perfectly trained neural net.
What happens if we add noise to an image?

It may fail completely…

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

5

Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

6 S. Fort, “Pixels still beat text: Attacking the OpenAI CLIP model with text patches and adversarial pixel perturbations”, [Link]

https://stanislavfort.github.io/2021/03/05/OpenAI_CLIP_stickers_and_adversarial_examples.html

Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?

It fails completely…

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

7 S. Fort, “Pixels still beat text: Attacking the OpenAI CLIP model with text patches and adversarial pixel perturbations”, [Link]

https://stanislavfort.github.io/2021/03/05/OpenAI_CLIP_stickers_and_adversarial_examples.html

Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

8 A. Kuzina, M. Welling, J.M. Tomczak, “Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks”, [Link]

+

Reference Noise from
targets Reconstruction

https://arxiv.org/abs/2103.06701

Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?

It fails completely…

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

9 A. Kuzina, M. Welling, J.M. Tomczak, “Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks”, [Link]

+

Reference Noise from
targets Reconstruction

https://arxiv.org/abs/2103.06701

We clearly see that training a neural
network (i.e., a conditional distribution):

is not enough!

p(y |x) = softmax (NN(x))

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

10

We clearly see that training a neural
network (i.e., a conditional distribution):

is not enough!

What can we do then?

Or, how to modify the wrong certainty?

p(y |x) = softmax (NN(x))

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

11

DEEP GENERATIVE MODELING: WHY DO WE NEED THE JOINT DISTRIBUTION?

12

DEEP GENERATIVE MODELING: WHY DO WE NEED THE JOINT DISTRIBUTION?

13

DEEP GENERATIVE MODELING: WHY DO WE NEED THE JOINT DISTRIBUTION?

14

DEEP GENERATIVE MODELING: WHY DO WE NEED THE JOINT DISTRIBUTION?

15

Thus, learning the conditional is a part of the story!
How can we learn p(x)?

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

16

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

17

'HHS�*HQHUDWLYH�0RGHOV

)ORZ�EDVHG�PRGHOV
�H�J���5HDO193�

$XWRUHJUHVVLYH�PRGHOV
�H�J���3L[HO&11� /DWHQW�YDULDEOH�PRGHOV

,PSOLFLW�PRGHOV
�H�J���*$1V�

3UHVFULEHG�PRGHOV
�H�J���9$(V�

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

18

'HHS�*HQHUDWLYH�0RGHOV

)ORZ�EDVHG�PRGHOV
�H�J���5HDO193�

$XWRUHJUHVVLYH�PRGHOV
�H�J���3L[HO&11� /DWHQW�YDULDEOH�PRGHOV

,PSOLFLW�PRGHOV
�H�J���*$1V�

3UHVFULEHG�PRGHOV
�H�J���9$(V�

+ Energy-based models

+ Diffusion models

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

19

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

20

'HHS�*HQHUDWLYH�0RGHOV

)ORZ�EDVHG�PRGHOV
�H�J���5HDO193�

$XWRUHJUHVVLYH�PRGHOV
�H�J���3L[HO&11� /DWHQW�YDULDEOH�PRGHOV

,PSOLFLW�PRGHOV
�H�J���*$1V�

3UHVFULEHG�PRGHOV
�H�J���9$(V�

We are interested in modeling

where is an RGB image (for instance).

p(x)

x ∈ {0,1,...,255}D×3

AUTOREGRESSIVE MODELS (ARMS)

21

We are interested in modeling

where is an RGB image (for instance).

We can use the product rule:

where

p(x)

x ∈ {0,1,...,255}D×3

p(x) = p(x1)
D

∏
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

AUTOREGRESSIVE MODELS (ARMS)

22

We are interested in modeling

where is an RGB image (for instance).

We can use the product rule:

where

p(x)

x ∈ {0,1,...,255}D×3

p(x) = p(x1)
D

∏
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

AUTOREGRESSIVE MODELS (ARMS)

23

Example:
p(x) = p(x1)p(x2 |x1)p(x3 |x1, x2)

We are interested in modeling

where is an RGB image (for instance).

We can use the product rule:

where

p(x)

x ∈ {0,1,...,255}D×3

p(x) = p(x1)
D

∏
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

AUTOREGRESSIVE MODELS (ARMS)

24

Training objective:

ln p(x) = ln p(x1) +
D

∑
d=2

ln p(xd |x<d)

Question: How we can model the conditionals efficiently? p(xd |x<d)

AUTOREGRESSIVE MODELS (ARMS)

25

Question: How we can model the conditionals efficiently?

Approach 1: Finite memory

p(xd |x<d)

AUTOREGRESSIVE MODELS (ARMS)

26

Question: How we can model the conditionals efficiently?

Approach 1: Finite memory

p(xd |x<d)

AUTOREGRESSIVE MODELS (ARMS)

27

Limited dependencies!
How many we should take?

Easy!

Question: How we can model the conditionals efficiently?

Approach 2: Long-range memory with RNNs

p(xd |x<d)

AUTOREGRESSIVE MODELS (ARMS)

28

Question: How we can model the conditionals efficiently?

Approach 2: Long-range memory with RNNs

p(xd |x<d)

AUTOREGRESSIVE MODELS (ARMS)

29

Sequential -> slow
Vanishing gradient problem

Easy!
Long-range dependencies!

Question: How we can model the conditionals efficiently?

Approach 3: Long-range memory with CNNs

p(xd |x<d)

AUTOREGRESSIVE MODELS (ARMS)

30

Question: How we can model the conditionals efficiently?

Approach 3: Long-range memory with CNNs

p(xd |x<d)

AUTOREGRESSIVE MODELS (ARMS)

31

Easy!
Long-range dependencies!
No training issues!

Slow generation

AUTOREGRESSIVE MODELS (ARMS)

32

Samples from a PixelCNN
Chen, Xi, et al. "Pixelsnail: An improved autoregressive generative model." ICML 2018

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

33

'HHS�*HQHUDWLYH�0RGHOV

)ORZ�EDVHG�PRGHOV
�H�J���5HDO193�

$XWRUHJUHVVLYH�PRGHOV
�H�J���3L[HO&11� /DWHQW�YDULDEOH�PRGHOV

,PSOLFLW�PRGHOV
�H�J���*$1V�

3UHVFULEHG�PRGHOV
�H�J���9$(V�

Let us consider a simple example.

FLOWS (FLOW-BASED MODELS)

34

Let us consider a simple example.

We have a random variable with .

We are interested in a distribution of .

z ∈ ℝ π(z) = 𝒩(z |0,1)

x = 0.75z + 1

FLOWS (FLOW-BASED MODELS)

35

Let us consider a simple example.

We have a random variable with .

We are interested in a distribution of .

What is the answer?

z ∈ ℝ π(z) = 𝒩(z |0,1)

x = 0.75z + 1

FLOWS (FLOW-BASED MODELS)

36

Let us consider a simple example.

We have a random variable with .

We are interested in a distribution of .

What is the answer? !

z ∈ ℝ π(z) = 𝒩(z |0,1)

x = 0.75z + 1

𝒩(x |1,0.75)

FLOWS (FLOW-BASED MODELS)

37

Let us consider a simple example.

We have a random variable with .

We are interested in a distribution of .

What is the answer? !

How can we calculate that? Through the change of variables formula:

z ∈ ℝ π(z) = 𝒩(z |0,1)

x = 0.75z + 1

𝒩(x |1,0.75)

p(x) = π (z = f −1(x)) ∂f −1(x)
∂x

FLOWS (FLOW-BASED MODELS)

38

Let us consider a simple example.

We have a random variable with .

We are interested in a distribution of .

What is the answer? !

How can we calculate that? Through the change of variables formula:

z ∈ ℝ π(z) = 𝒩(z |0,1)

x = 0.75z + 1

𝒩(x |1,0.75)

p(x) = π (z = f −1(x)) ∂f −1(x)
∂x

FLOWS (FLOW-BASED MODELS)

39 Invertible function

Change of volume
(Jacobian)

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

40

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

41

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

42

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Simple distribution Complex distribution

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

43

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Known, e.g., Gaussian

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

44

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Jacobian must be tractable

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

45

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Invertible neural networks!

We change a random variable x to another random variable z using
invertible transformations, :

Training objective:

x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

46

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

ln p(x) = ln π (z0 = f −1(x)) −
K

∑
i=1

ln Jfi(zi−1)

Two main components
1) Coupling layer:

is invertible by design:

2) Permutation layer

ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa)

xb = (yb − t(ya)) ⊙ exp (−s(ya))
xa = ya

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

47

Two main components
1) Coupling layer:

is invertible by design:

2) Permutation layer

ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa)

xb = (yb − t(ya)) ⊙ exp (−s(ya))
xa = ya

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

48

det(J) =
D−d

∏
j=1

exp (s (xa))j
= exp

D−d

∑
j=1

s (xa)j

Jacobian is tractable!

det(J) = 1

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

49

[D

[E I \E

\D]D

]E

[D

[E I��� \E

\D]D

]E

&RXSOLQJ�OD\HU 3HUPXWDWLRQ�OD\HU &RXSOLQJ�OD\HU 3HUPXWDWLRQ�OD\HU

$ %

A: Forward pass. B: Inverse pass.

FLOWS (FLOW-BASED MODELS)

50Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPSx 2018

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

51

'HHS�*HQHUDWLYH�0RGHOV

)ORZ�EDVHG�PRGHOV
�H�J���5HDO193�

$XWRUHJUHVVLYH�PRGHOV
�H�J���3L[HO&11� /DWHQW�YDULDEOH�PRGHOV

,PSOLFLW�PRGHOV
�H�J���*$1V�

3UHVFULEHG�PRGHOV
�H�J���9$(V�

Let’s consider a latent variable
model where we distinguish:

• latent variables

• observable variables

Latent variables lie on a
low-dimensional manifold.

z ∈ 𝒵M

x ∈ 𝒳D

VARIATIONAL AUTO-ENCODERS

52

1. z ∼ p(z)
2. x ∼ p(x |z)

Generative process:

Let’s consider a latent variable
model where we distinguish:

• latent variables

• observable variables

Latent variables lie on a
low-dimensional manifold.

z ∈ 𝒵M

x ∈ 𝒳D

VARIATIONAL AUTO-ENCODERS

53

1. z ∼ p(z)
2. x ∼ p(x |z)

Generative process:

The objective function:

ln p(x) = ln∫ p(x |z)p(z) dz

Let’s consider a latent variable
model where we distinguish:

• latent variables

• observable variables

Latent variables lie on a
low-dimensional manifold.

z ∈ 𝒵M

x ∈ 𝒳D

VARIATIONAL AUTO-ENCODERS

54

1. z ∼ p(z)
2. x ∼ p(x |z)

Generative process:

The objective function:

ln p(x) = ln∫ p(x |z)p(z) dz The integral is intractable…

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [p(x |z)p(z)
qϕ(z)]

≥ 𝔼z∼qϕ(z) ln [p(x |z)p(z)
qϕ(z)]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]

VARIATIONAL AUTO-ENCODERS

55

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [p(x |z)p(z)
qϕ(z)]

≥ 𝔼z∼qϕ(z) ln [p(x |z)p(z)
qϕ(z)]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]

VARIATIONAL AUTO-ENCODERS

56

Variational posteriors

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [p(x |z)p(z)
qϕ(z)]

≥ 𝔼z∼qϕ(z) ln [p(x |z)p(z)
qϕ(z)]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]

VARIATIONAL AUTO-ENCODERS

57

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [p(x |z)p(z)
qϕ(z)]

≥ 𝔼z∼qϕ(z) ln [p(x |z)p(z)
qϕ(z)]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]

VARIATIONAL AUTO-ENCODERS

58

Jensen’s inequality

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [p(x |z)p(z)
qϕ(z)]

≥ 𝔼z∼qϕ(z) ln [p(x |z)p(z)
qϕ(z)]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]

VARIATIONAL AUTO-ENCODERS

59

Jensen’s inequality

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [p(x |z)p(z)
qϕ(z)]

≥ 𝔼z∼qϕ(z) ln [p(x |z)p(z)
qϕ(z)]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]

VARIATIONAL AUTO-ENCODERS

60

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [p(x |z)p(z)
qϕ(z)]

≥ 𝔼z∼qϕ(z) ln [p(x |z)p(z)
qϕ(z)]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]

VARIATIONAL AUTO-ENCODERS

61

ln p(x) = ln∫ p(x |z)p(z) dz

= ln∫
qϕ(z)
qϕ(z)

p(x |z)p(z) dz

= ln 𝔼z∼qϕ(z) [p(x |z)p(z)
qϕ(z)]

≥ 𝔼z∼qϕ(z) ln [p(x |z)p(z)
qϕ(z)]

= 𝔼z∼qϕ(z) [ln p(x |z) + ln p(z) − ln qϕ(z)]
= 𝔼z∼qϕ(z) [ln p(x |z)] − 𝔼z∼qϕ(z) [ln qϕ(z) − ln p(z)]

VARIATIONAL AUTO-ENCODERS

62

Reconstruction error “Regularization” term

 ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]
VARIATIONAL AUTO-ENCODERS

63Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014

ELBO: Evidence Lower Bound

We consider amortized inference:

In other words, a single parameterization for each new input x.

ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]
qϕ(z |x)

VARIATIONAL AUTO-ENCODERS

64Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014

We consider amortized inference:

In other words, a single parameterization for each new input x.

Moreover, we use reparameterization trick:

ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]
qϕ(z |x)

VARIATIONAL AUTO-ENCODERS

65

Every Gaussian variable could be defined as:

where
z = μ + σ ⋅ ε

ε ∼ 𝒩(0,1)
Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014

We consider amortized inference:

In other words, a single parameterization for each new input x.

Moreover, we use reparameterization trick:

ln p(x) ≥ 𝔼z∼qϕ(z|x) [ln p(x |z)] − 𝔼z∼qϕ(z|x) [ln qϕ(z |x) − ln p(z)]
qϕ(z |x)

VARIATIONAL AUTO-ENCODERS

66

It reduces the variance of the gradients.
It allows to get randomness outside z.
z = μ + σ ⋅ ε
Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014

VARIATIONAL AUTO-ENCODERS

67Child, R. "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images." ICLR 2021

Generations Very Deep VAE

VARIATIONAL AUTO-ENCODERS

68Gatopoulos, I., and Tomczak, J.M., "Self-Supervised Variational Auto-Encoders." arXiv preprint arXiv:2010.02014 (2020).

Generations Hierarchical VAE

• Here: the likelihood-based generative models.

• We skipped Generative Adversarial Nets & others.

• Why generative modeling?

•

• Important directions:

• Better uncertainty quantification

• New parameterization (new neural networks)

• Out-of-Distribution

• Continual learning

p(x, y) = p(y |x) p(x)

CONCLUSION

69

• Here: the likelihood-based generative models.

• We skipped Generative Adversarial Nets & others.

• Why generative modeling?

• Important directions:

➡ Better uncertainty quantification

➡ New parameterization (new neural networks)

➡ Out-of-Distribution

➡ Continual learning

p(x, y) = p(y |x) p(x)

CONCLUSION

70

• Here: the likelihood-based generative models.

• We skipped Generative Adversarial Nets & others.

• Why generative modeling?

• Important directions:

➡ Better uncertainty quantification

➡ New parameterization (new neural networks)

➡ Out-of-Distribution

➡ Continual learning

p(x, y) = p(y |x) p(x)

CONCLUSION

71

• Here: the likelihood-based generative models.

• We skipped Generative Adversarial Nets & others.

• Why generative modeling?

• Important directions:

➡ Better uncertainty quantification

➡ New parameterization (new neural networks)

➡ Out-of-Distribution

➡ Continual learning

p(x, y) = p(y |x) p(x)

CONCLUSION

72

THANK YOU FOR YOUR ATTENTION

Jakub M. Tomczak
Computational Intelligence group
Vrije Universiteit Amsterdam

Webpage: https://jmtomczak.github.io/

Github: https://github.com/jmtomczak

Twitter: https://twitter.com/jmtomczak

