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BLOG ABOUT DEEP GENERATIVE MODELING

If you are interested in going deeper into deep generative
modeling, please take a look at my blog: [Blog]

- Intro: [Link]
- ARMs: [Link]

- Flows: [Link], [Link]

- VAEs: [Link]
- Hybrid modeling: TBD

: VUf¥


https://jmtomczak.github.io/blog.html
https://jmtomczak.github.io/blog/1/1_introduction.html
https://jmtomczak.github.io/blog/2/2_ARM.html
https://jmtomczak.github.io/blog/3/3_flows.html
https://jmtomczak.github.io/blog/5/5_IDF.html
https://jmtomczak.github.io/blog/4/4_VAE.html

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.
What happens if we add noise to an image?
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DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.
What happens if we add noise to an image?

S e e e j
p(y = cat|x) =0.90 "~ noise p(y = cat|x) =0.05

p(y =dog|x) = 0.05 p(y = dog|x) =0.05
p(y = horse|x) = 0.05 p(y = horse|x) = 0.90
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DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.
What happens if we add noise to an image?

pE (cjat|r))=o.900 pg (C_'iat|r))=6005
p(y =dog|x) =0.05 p(y =dog|x) =0.05
p(y = horse|x) = 0.05 p(y = horse|x) = 0.90

It may fail completely...

: VUf¥



DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?

CIFAR-10 original image CIFAR-10 labels CIFAR-10 original image CIFAR-10 labels Adversarial image CIFAR-10 labels
"dog" No sticker "dog" + "bird" sticker Used to get adversary From "dog" to "frog" Used to get adversary
truck truck truck
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frog frog frrg99% |
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hlrplane airplane airplane
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Probability Probability Probability
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6 S. Fort, “Pixels still beat text: Attacking the OpenAl CLIP model with text patches and adversarial pixel perturbations”, |Link|VU »°


https://stanislavfort.github.io/2021/03/05/OpenAI_CLIP_stickers_and_adversarial_examples.html
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Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?
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It fails completely...
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7 S. Fort, “Pixels still beat text: Attacking the OpenAl CLIP model with text patches and adversarial pixel perturbations”, |Link|VU »°


https://stanislavfort.github.io/2021/03/05/OpenAI_CLIP_stickers_and_adversarial_examples.html

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.

Reference Noise from Reconstruction
targets

8 A. Kuzina, M. Welling, J.M. Tomczak, “Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks”, [Link] VU k


https://arxiv.org/abs/2103.06701

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?

Noise from )
Reference Reconstruction

It fails completely... targets

9 A. Kuzina, M. Welling, J.M. Tomczak, “Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks”, [Link] VU k


https://arxiv.org/abs/2103.06701

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

We clearly see that training a neural
network (i.e., a conditional distribution):

p(y|x) = softmax (NN(X))

is not enough! |

Granny Smith

library 0.0%
pizza 0.0%
toaster 0.0%
dough 0.0%
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DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

We clearly see that training a neural
network (i.e., a conditional distribution):

p(y|x) = softmax (NN(X))

is not enough!
Granny Smith

What can we do then?

library 0.0%

pizza 0.0%

. . toaster 0.0%

Or, how to modify the wrong certainty? dough 0.0%

; VUf¥



DEEP GENERATIVE MODELING: WHY DO WE NEED THE JOINT DISTRIBUTION?
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DEEP GENERATIVE MODELING: WHY DO WE NEED THE JOINT DISTRIBUTION?

p(y|x)

p(blue|x) is high
= certain decision!

. VUf¥



DEEP GENERATIVE MODELING: WHY DO WE NEED THE JOINT DISTRIBUTION?

p(y|x) p(x,y) = ply|x) p(x)
p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low

= uncertain decision!
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DEEP GENERATIVE MODELING: WHY DO WE NEED THE JOINT DISTRIBUTION?

%

p(y|x) p(x,y) = ply|x) p(x)
p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low

= uncertain decision!

Thus, learning the conditional is a part of the story!

How can we learn p(x)? VU k
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DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

16

“ i want to talk to you . ”

“i want to be with you . ”

“i do n't want to be with you . ”

i do n't want to be with you .

she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Text analysis

label
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Active Learning

Image analysis
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Reinforcement Learning

Audio analysis
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Medical data

and more...
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DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models

Autoregressive models Flow-based models

(e.g., PixelCNN) (e.g., RealNVP) Latent variable models

Implicit models Prescribed models
(e.g., GANs) (e.g., VAES)

., VUf¥



DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models
+ Energy-based models

Autoregressive models Flow-based models Latent variable models
(e.g., PixelCNN) (e.g., RealNVP) ‘
Implicit models Prescribed models
(e.g., GANs) (e.g., VAES)

+ Diffusion models

. VUf¥



DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Generative models Training Likelihood Sampling Lossy compression Lossless compression

Autoregressive models  stable exact slow no yes
Flow-based models stable exact fast/slow no yes
Implicit models unstable no fast no no
Prescribed model stable approximate fast yes no

. VUf¥



DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models
Flow-based models
(e.g., RealNVP)

( Autoregressive models

(e.g., PixelCNN) Latent variable models

Implicit models Prescribed models
(e.g., GANs) (e.g., VAES)

. VUf¥



AUTOREGRESSIVE MODELS (ARMS)

We are interested in modeling

p(X)

where x € {(),1,...,255}D><3 is an RGB image (for instance).
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AUTOREGRESSIVE MODELS (ARMS)

We are interested in modeling

p(x)
where x € {O,l,...,255}D><3 is an RGB image (for instance).

We can use the product rule:
D
px) = p(x) | [ pGeal x20)
d=2

. T
where X<d — [XI’XZ’ ceey xd—l]
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AUTOREGRESSIVE MODELS (ARMS)

We are interested in modeling
p(x)
where x € {O,l,...,255}D><3 is an RGB image (for instance).

We can use the product rule:
D
px) = p(x) | [ pGeal x20)
d=2

. T
where X_,; =[xy, xp, ..., X;_1] Example:

p(X) = p(x)p(x; | x)p(xs | X1, x,)
. VU¥



AUTOREGRESSIVE MODELS (ARMS)

We are interested in modeling

p(x)
where x € {O,l,...,255}D><3 is an RGB image (for instance).

We can use the product rule:

D
px) = pGe) [ [ pral x0)
d=2

. T
where X<d — [XI’XZ’ ceey xd—l]

Training objective:

D
Inp(x) = Inp(y) + Y InpQy| X )y e
d=2

24



AUTOREGRESSIVE MODELS (ARMS)

Question: How we can model the conditionals p(x; | X_,) efficiently?
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AUTOREGRESSIVE MODELS (ARMS)

Question: How we can model the conditionals p(x; | X_,) efficiently?

Approach 1: Finite memory

O 0 0 0 0O o o
softmax
ha

5 O O O O O O
LP
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AUTOREGRESSIVE MODELS (ARMS)

Question: How we can model the conditionals p(x; | X_,) efficiently?

Approach 1: Finite memory

O 0 0 0 0O o o
softmax
ha

5 O O O O O O
LP

o o O O O O O O

Easy! Limited dependencies!
27 How many we should take? VU 4(



AUTOREGRESSIVE MODELS (ARMS)

Question: How we can model the conditionals p(x; | X_,) efficiently?

Approach 2: Long-range memory with RNNs

%)
O O O O O O o¢

softmax

ha
) () () @ @ ¢ @
/ / .\' block
Td
@ @ @ O ) @ @

O
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AUTOREGRESSIVE MODELS (ARMS)

Question: How we can model the conditionals p(x; | X_,) efficiently?

Approach 2: Long-range memory with RNNs

%)
O O O O O O o¢

softmax

ha

® () () ® CJ 9 C
/ / .\' block
Td
@ @ @ O () @ @ O

Easy! Sequential -> slow k
29 Long-range dependencies! Vanishing gradient problem VU



AUTOREGRESSIVE MODELS (ARMS)

Question: How we can model the conditionals p(x; | X_,) efficiently?

Approach 3: Long-range memory with CNNs
O O O O O O O

QQQQQQQ

CausalConvlD(B)

"'OQQQ

CausalConvlD(B)

CausalConvlD(A)

o VU
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AUTOREGRESSIVE MODELS (ARMS)

Question: How we can model the conditionals p(x; | X_,) efficiently?

Approach 3: Long-range memory with CNNs
O O O O O O O

Easy!
Long-range dependencies!
No training issues!

QQQQQQQ

CausalConvlD(B)

"'OQQQ

CausalConvlD(B) .
Slow generation

CausalConvlD(A)

o VU
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AUTOREGRESSIVE MODELS (ARMS)
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Samples from a PixelCNN
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32Chen, Xi, et al. "Pixelsnail: An improved autoregressive generative model." ICML 2018 VU k



DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models

: ”" Flow-based models
‘ (e.g., RealNVP) '

Autoregressive models

(e.g., PixelCNN) Latent variable models

Implicit models Prescribed models
(e.g., GANs) (e.g., VAES)

. VUf¥



FLOWS (FLOW-BASED MODELS)

Let us consider a simple example.
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FLOWS (FLOW-BASED MODELS)

Let us consider a simple example.
We have a random variable z € R with 7z(z) = A4 (z]0,1).

We are interested in a distribution of x = 0.75z + 1.

35
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FLOWS (FLOW-BASED MODELS)

Let us consider a simple example.
We have a random variable z € R with 7z(z) = A4 (z]0,1).
We are interested in a distribution of x = 0.75z + 1.

What is the answer?

36
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FLOWS (FLOW-BASED MODELS)

Let us consider a simple example.
We have a random variable z € R with 7z(z) = A4 (z]0,1).
We are interested in a distribution of x = 0.75z + 1.

What is the answer? /(x| 1,0.75)]

. VUf¥



FLOWS (FLOW-BASED MODELS)

Let us consider a simple example.

We have a random variable z € R with 7z(z) = A4 (z]0,1).

We are interested in a distribution of x = 0.75z + 1.

What is the answer? 4 (x| 1,0.75)!

How can we calculate that? Through the change of variables formula:

p(x) =z (z=f"'))

38
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FLOWS (FLOW-BASED MODELS)

Let us consider a simple example.

We have a random variable z € R with 7z(z) = A4 (z]0,1).
We are interested in a distribution of x = 0.75z + 1.
What is the answer? 4 (x| 1,0.75)!

How can we calculate that? Through the change of variables formula:

'\ Change of volume
} (Jacobian)

. o
NRreas

Invertible function |

VU¥
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FLOWS (FLOW-BASED MODELS)

We change a random variable x to another random variable z using
invertible transformations, x, z € RP:

K —
po0 = (20 = £'00) [ ] [0 |

i=1

. VUf¥



FLOWS (FLOW-BASED MODELS)

We change a random variable x to another random variable z using
invertible transformations, x, z € RP:

K —
po0 = (20 = £'00) [ ] [0 |

i=1

fi ] /2 “
— — m——
— | /) —  — AN

0 0 0
“latent” space pixel space

. VUf¥




FLOWS (FLOW-BASED MODELS)

We change a random variable x to another random variable z using

invertible transformations, x, z € RP:

e
o

P =

Simple distribution i=

fi | o
A= —
«— | —

“latent” space

42

K —
po0 = 7 (2 =100 [ ] |30 |
=1

Complex distribution

pixel space

VU¥



FLOWS (FLOW-BASED MODELS)

We change a random variable x to another random variable z using

invertible transformations, X, z E RP.
Known, e.g., Gaussian _——" —

L 0 0
“latent” space pixel space

. VUf¥



FLOWS (FLOW-BASED MODELS)

We change a random variable x to another random variable z using
invertible transformations, X,z € RP: Jacobian must be tractable

P

px) =7 (zg =1 (%)

“ fi ] o “
— — m——
| D _ . D ves D _J\/.\/\a=

0 0 0
“latent” space pixel space
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FLOWS (FLOW-BASED MODELS)

We change a random variable x to another random variable z using
invertible transformations, x, z € RP:

K —
po0 = (20 = £'00) [ ] [0 |

=1 _
o~

0

“latent” space pixel space

Invertible neural networks!

. VUf¥



FLOWS (FLOW-BASED MODELS)

We change a random variable x to another random variable z using
invertible transformations, x, z € RP:

K —
po0 = 7 (2 =100 [ ] |30 |
i=1

Training objective:

K
Inp(x)=Inrn (zo =f‘1(x)) — Z In ‘in(zi_l)‘
i=1

46
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FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

Two main components

1) Coupling layer:

ya = XCl

Yy, = exp (s <Xa)) O x;, + 1 (x,)

is invertible by design:
X, = (yb — t(Ya)) © exp (—s(ya))
Xa = ya

2) Permutation layer

; VUf¥



FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

Two main components

1) Coupling layer:

ya = Xd

Yy, = €Xp <s (Xa)) OX,+1 (Xa>

Jacobian is tractable!

D—-d D—d
det(J) = Hexp (s (x,) ) = exp s (Xa)j
is invertible by design: j=1 / j=1

x, = (¥, — 1(y,)) © exp (—s(y,))

Xa = ya

2) Permutation layer  j.¢(j) = |

. VUf¥



FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

A B
Coupling layer Permutation layer Coupling layer Permutation layer

A: Forward pass. B: Inverse pass. VU%

49



FLOWS (FLOW-BASED MODELS)

50Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurlPSx 2018 VU o



DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models

Autoregressive models Flow-based models

(e.g., PixelCNN) (e.g., RealNVP) Latent variable models

Implicit models Prescribed models
(e.g., GANs) (e.g., VAESs)

51



VARIATIONAL AUTO-ENCODERS

Let’s consider a latent variable p(x|z)

model where we distinguish:

e latent variablesz €¢ M o(2)

 observable variables x € P

. : Generative process:
Latent variables lie on a

low-dimensional manifold. 1.z ~ p(z)
2. X ~ p(x|z)

; VUf¥



VARIATIONAL AUTO-ENCODERS

Let’s consider a latent variable p(x|z)

model where we distinguish:

e latent variablesz € ¥ o(2)

 observable variables x € P

. : Generative process:
Latent variables lie on a

low-dimensional manifold. 1.z ~ p(z)
2. x ~ p(x|z)
The objective function:

Inp(x) =In JP(X |2)p(z) dz VU
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VARIATIONAL AUTO-ENCODERS

Let’s consider a latent variable p(x|z)

model where we distinguish:

e latent variablesz € ¥ o(2)

 observable variables x € P

. : Generative process:
Latent variables lie on a

low-dimensional manifold. 1.z ~ p(z)
2. x ~ p(x|z)
The objective function:

Inp(x) = In Jp(x |z)p(z) dz  The integral is intractable...

VU¥
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

, VU



VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

| J q4(Z) Variational posteriors
= In

p(x|z)p(z) dz
q4(2)

. VU



VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

= an W) p(x|z)p(z) dz

q5(2)
p(X | Z)p (Z)
= In lEZNCI(/;(Z) [ q¢(z) ]

. VU



VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

= an W) p(x|z)p(z) dz
qy(2) " _
p(x|z)p(z)

q4(Z)

>FE, . In pix|2)p(@) Jensen’s inequality
2~qy(2) (Z)
d¢

=Ink

2~q4(2)
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

= an W) p(x|z)p(z) dz
qy(2) " _
p(x|z)p(z)

q4(Z)

@erq @ 1N px|z)p(2) Jensen’s inequality
’ q4(Z)

=Ink

2~q4(2)

. VU



VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

= an W) p(x|z)p(z) dz
qy(2) " _
p(x|z)p(z)

B2
p(x|2)p(z)
q4(Z)

=Ink

2~q4(2)

2 [EZN%(Z) In

= Eye gy [INP(X]2) + 1 p(2) — In g,(2)|

. VUf¥



VARIATIONAL AUTO-ENCODERS

Inp(x) =In [p(X |2)p(2) dz

= an W) p(x|z)p(z) dz
qy(2) " _
p(x|z)p(z)

- q4(2)
p(x|2)p(z)
q4(Z)

=Ink

2~q4(2)

2 [EZNCI(p(Z) In

=[E _ln p(x|z)+Inp(z) —In q¢(z)]

2~q(2)

_F In p(x|2)] — E,_y 0 [m 44(2) — In p(z)]

2~q,(2)

VU¥
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

Reconstruction error “Regularization” term

VU¥
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VARIATIONAL AUTO-ENCODERS

Inp(x) 2 E,y g0 [PX12)] ~ E, lln gy(z]X) — In p(z)]

ELBO: Evidence Lower Bound

63Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014 VU k



VARIATIONAL AUTO-ENCODERS

Inp(x) 2 E,y g0 [PX12)] ~ E, lln gy(z]X) — In p(z)]

We consider amortized inference: g,,(7 | X)

In other words, a single parameterization for each new input x.

64Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014 VU k



VARIATIONAL AUTO-ENCODERS

Inp(x) 2 E,y g0 [PX12)] ~ E, lln gy(z]X) — In p(z)]

We consider amortized inference: g,,(7 | X)

In other words, a single parameterization for each new input x.

A

. . . e~ N(0,
Moreover, we use reparameterization trick: o
Every Gaussian variable could be defined as:
I=U+O0-E

where € ~ 4(0,1)

65Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014



VARIATIONAL AUTO-ENCODERS

Inp(x) 2 E,y g0 [PX12)] ~ E, lln gy(z]X) — In p(z)]

We consider amortized inference: g,,(7 | X)

In other words, a single parameterization for each new input x.

A

° ° ° € NN )
Moreover, we use reparameterization trick: o
It reduces the variance of the gradients.
It allows to get randomness outside z.
I=u+o-¢

66Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014



VARIATIONAL AUTO-ENCODERS

Bottom-up path Top-down path
O
O
U
0
1
[
[
O/
O
0/
pool unpool

res block topdown block
res block topdown block
res block topdown block

Input Reconstruction

Generations Very Deep VAE
Ul

67Child, R. "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images." ICLR 2021



VARIATIONAL AUTO-ENCODERS

E
%) L :: >
° S (-~ R
§ ﬁ r‘\ ’ ~.“.- '
g UI’ 5 = N .
8 g { :,\ 4 3
ﬁ D)
Z = > = *. A
3 - &
I :
i) Generative Model ii) Inference Model
Generations Hierarchical VAE 5
68 Gatopoulos, |., and Tomczak, J.M., "Self-Supervised Variational Auto-Encoders." arXiv preprint arXiv:2010.02014 (2020).



e Here: the likelihood-based generative models.
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e Here: the likelihood-based generative models.

e We skipped Generative Adversarial Nets & others.
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e Here: the likelihood-based generative models.
e We skipped Generative Adversarial Nets & others.

e Why generative modeling?

pX,y) =p(y|x) p(x)
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e Here: the likelihood-based generative models.
e We skipped Generative Adversarial Nets & others.
e Why generative modeling?
pX,y) =p(y|x) p(x)
e Important directions:

= Better uncertainty quantification

= New parameterization (new neural networks)
= Qut-of-Distribution

= Continual learning

; VU



THANK YOU FOR YOUR ATTENTION

Jakub M. Tomczak

Computational Intelligence group

Vrije Universiteit Amsterdam
Webpage: https:/jmtomczak.github.io/
Github: https://github.com/jmtomczak

Twitter: https://twitter.com/jmtomczak



