Introduction to Deep Generative Modeling

Jakub M. Tomczak

If you are interested in going deeper into deep generative modeling, please take a look at my blog: [Blog]

- Intro: [Link]
- ARMs: [Link]
- Flows: [Link], [Link]
- VAEs: [Link]
- Hybrid modeling: TBD

It may fail completely...

6 S. Fort, "Pixels still beat text: Attacking the OpenAI CLIP model with text patches and adversarial pixel perturbations", [Link]

It fails completely...

7 S. Fort, "Pixels still beat text: Attacking the OpenAI CLIP model with text patches and adversarial pixel perturbations", [Link]

9 A. Kuzina, M. Welling, J.M. Tomczak, "Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks", [Link]

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

We clearly see that training a neural network (i.e., a conditional distribution):

 $p(y | \mathbf{x}) = \text{softmax} (NN(\mathbf{x}))$

is not enough!

Granny Smith	0.1%
iPod	99.7%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.0%
	N / I

DEEP GENERATIVE MODELING: IS LEARNING CLASSIFIERS ENOUGH?

We clearly see that training a neural network (i.e., a conditional distribution):

$$p(y | \mathbf{x}) = \operatorname{softmax} (NN(\mathbf{x}))$$

is not enough!

What can we do then?

Or, how to modify the **wrong certainty**?

Granny Smith	0.1%
Pod	99.7%
ibrary	0.0%
pizza	0.0%
coaster	0.0%
dough	0.0%
	N / I

p(blue|x) is high
= certain decision!

p(blue|x) is high
= certain decision!

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!

p(blue|x) is high
= certain decision!

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!

Thus, learning the conditional is a part of the story! How can we learn p(x)?

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

"i want to talk to you." "i want to be with you." "i do n't want to be with you." i do n't want to be with you. she did n't want to be with him.

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

Text analysis

Active Learning

Image analysis

Reinforcement Learning

Graph analysis

Audio analysis

Medical data

Generative models	Training	Likelihood	Sampling	Lossy compression	Lossless compression
Autoregressive models	stable	exact	slow	no	yes
Flow-based models	stable	exact	fast/slow	no	yes
Implicit models	unstable	no	fast	no	no
Prescribed model	stable	approximate	fast	yes	no

 $p(\mathbf{x})$

where $\mathbf{x} \in \{0, 1, \dots, 255\}^{D \times 3}$ is an RGB image (for instance).

 $p(\mathbf{x})$

where $\mathbf{x} \in \{0, 1, \dots, 255\}^{D \times 3}$ is an RGB image (for instance).

We can use the **product rule**:

$$p(\mathbf{x}) = p(x_1) \prod_{d=2}^{D} p(x_d \,|\, \mathbf{x}_{< d})$$
 where $\mathbf{x}_{< d} = [x_1, x_2, ..., x_{d-1}]^{\top}$

 $p(\mathbf{x})$

where $\mathbf{x} \in \{0, 1, \dots, 255\}^{D \times 3}$ is an RGB image (for instance).

We can use the **product rule**:

$$p(\mathbf{x}) = p(x_1) \prod_{d=2}^{D} p(x_d | \mathbf{x}_{< d})$$

where $\mathbf{x}_{< d} = [x_1, x_2, \dots, x_{d-1}]^{\top}$
Example:
 $p(\mathbf{x}) = p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)$

n

 $p(\mathbf{x})$

where $\mathbf{x} \in \{0, 1, \dots, 255\}^{D \times 3}$ is an RGB image (for instance).

We can use the **product rule**:

$$p(\mathbf{x}) = p(x_1) \prod_{d=2}^{D} p(x_d | \mathbf{x}_{< d})$$

where $\mathbf{x}_{< d} = [x_1, x_2, \dots, x_{d-1}]^{\mathsf{T}}$
Training objective:
$$\ln p(\mathbf{x}) = \ln p(x_1) + \sum_{d=2}^{D} \ln p(x_d | \mathbf{x}_{< d}) \mathsf{VU} \mathsf{I}$$

Approach 1: Finite memory

Approach 1: Finite memory

Easy!

Limited dependencies! How many we should take?

Approach 2: Long-range memory with RNNs

Approach 2: Long-range memory with RNNs

Easy! Long-range dependencies! Sequential -> slow Vanishing gradient problem

Approach 3: Long-range memory with CNNs

Approach 3: Long-range memory with CNNs

AUTOREGRESSIVE MODELS (ARMS)

Samples from a PixelCNN

32Chen, Xi, et al. "Pixelsnail: An improved autoregressive generative model." ICML 2018

Let us consider a simple example.

Let us consider a simple example.

```
We have a random variable z \in \mathbb{R} with \pi(z) = \mathcal{N}(z \mid 0, 1).
```

We are interested in a distribution of x = 0.75z + 1.

Let us consider a simple example.

```
We have a random variable z \in \mathbb{R} with \pi(z) = \mathcal{N}(z \mid 0, 1).
```

We are interested in a distribution of x = 0.75z + 1.

What is the answer?

Let us consider a simple example.

```
We have a random variable z \in \mathbb{R} with \pi(z) = \mathcal{N}(z \mid 0, 1).
```

We are interested in a distribution of x = 0.75z + 1.

What is the answer? $\mathcal{N}(x \mid 1, 0.75)!$

Let us consider a simple example.

We have a random variable $z \in \mathbb{R}$ with $\pi(z) = \mathcal{N}(z \mid 0, 1)$.

We are interested in a distribution of x = 0.75z + 1.

What is the answer? $\mathcal{N}(x \mid 1, 0.75)!$

How can we calculate that? Through the change of variables formula:

$$p(x) = \pi \left(z = f^{-1}(x) \right) \left| \frac{\partial f^{-1}(x)}{\partial x} \right|$$

Let us consider a simple example.

We have a random variable $z \in \mathbb{R}$ with $\pi(z) = \mathcal{N}(z \mid 0, 1)$.

We are interested in a distribution of x = 0.75z + 1.

What is the answer? $\mathcal{N}(x \mid 1, 0.75)!$

In

How can we calculate that? Through the **change of variables formula**:

$$p(x) = \pi \left(z = f^{-1}(x) \right) \left(\begin{array}{c} \partial f^{-1}(x) \\ \partial x \end{array} \right) \begin{array}{c} \text{Change of volume} \\ \text{(Jacobian)} \end{array}$$

We change a random variable **x** to another random variable **z** using **invertible** transformations, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$:

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^K \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

We change a random variable **x** to another random variable **z** using **invertible** transformations, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{D}$:

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^K \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

We change a random variable **x** to another random variable **z** using **invertible** transformations, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$:

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^{K} \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$
Complex distribution
$$f_1 \qquad f_1 \qquad f_2 \qquad \dots \qquad f_2 \qquad \dots \qquad f_1$$
"latent" space

Si

We change a random variable **x** to another random variable **z** using **invertible** transformations, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$:

Known, e.g., Gaussian

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^{K} \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

V

We change a random variable **x** to another random variable **z** using **invertible** transformations, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$: Jacobian must be tractable

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^{K} \left[\mathbf{J}_{f_i}(z_{i-1}) \right]^{-1}$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

We change a random variable **x** to another random variable **z** using **invertible** transformations, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$:

We change a random variable **x** to another random variable **z** using **invertible** transformations, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$:

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^K \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

Training objective:

$$\ln p(\mathbf{x}) = \ln \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) - \sum_{i=1}^K \ln \left| \mathbf{J}_{f_i}(z_{i-1}) \right|$$

Two main components

1) Coupling layer:

 $\mathbf{y}_{a} = \mathbf{x}_{a}$ $\mathbf{y}_{b} = \exp\left(s\left(\mathbf{x}_{a}\right)\right) \odot \mathbf{x}_{b} + t\left(\mathbf{x}_{a}\right)$

is invertible by design: $\mathbf{x}_{b} = (\mathbf{y}_{b} - t(\mathbf{y}_{a})) \odot \exp(-s(\mathbf{y}_{a}))$ $\mathbf{x}_{a} = \mathbf{y}_{a}$

2) Permutation layer

Two main components 1) **Coupling layer**:

 $\mathbf{y}_{a} = \mathbf{x}_{a}$ $\mathbf{y}_{b} = \exp\left(s\left(\mathbf{x}_{a}\right)\right) \odot \mathbf{x}_{b} + t\left(\mathbf{x}_{a}\right)$

is invertible by design: $\mathbf{x}_{b} = (\mathbf{y}_{b} - t(\mathbf{y}_{a})) \odot \exp(-s(\mathbf{y}_{a}))$ $\mathbf{x}_{a} = \mathbf{y}_{a}$

2) Permutation layer $det(\mathbf{J}) = 1$

Jacobian is tractable! $det(\mathbf{J}) = \prod_{j=1}^{D-d} \exp\left(s\left(\mathbf{x}_{a}\right)\right)_{j} = \exp\left(\sum_{j=1}^{D-d} s\left(\mathbf{x}_{a}\right)_{j}\right)$

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

A: Forward pass. B: Inverse pass.

FLOWS (FLOW-BASED MODELS)

⁵⁰Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPSx 2018

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathscr{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a **low-dimensional manifold**.

2. $\mathbf{x} \sim p(\mathbf{x} | \mathbf{z})$

Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathscr{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a **low-dimensional manifold**.

The objective function: $\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$

Generative process:

$$l. \mathbf{z} \sim p(\mathbf{z})$$

2. $\mathbf{x} \sim p(\mathbf{x} | \mathbf{z})$

Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathscr{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a **low-dimensional manifold**.

The objective function: $\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, \mathrm{d}\mathbf{z}$

2. $\mathbf{x} \sim p(\mathbf{x} | \mathbf{z})$

The integral is intractable...

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

 $p(\mathbf{z})$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

nal posteriors

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right] \quad \text{Jensen's inequality}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right] \quad \text{Jensen's inequality}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} | \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$
Reconstruction error

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$
With the second second

$$\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln p(\mathbf{x} | \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} | \mathbf{x}) - \ln p(\mathbf{z}) \right]$$

ELBO: Evidence Lower Bound

$$\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} \mid \mathbf{x}) - \ln p(\mathbf{z}) \right]$$

We consider **amortized inference**: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

In other words, a single parameterization for each new input **x**.

$$\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} \mid \mathbf{x}) - \ln p(\mathbf{z}) \right]$$

We consider **amortized inference**: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

In other words, a single parameterization for each new input **x**.

Moreover, we use reparameterization trick:

Every Gaussian variable could be defined as: $z = \mu + \sigma \cdot \varepsilon$ where $\varepsilon \sim \mathcal{N}(0,1)$

$$\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} \mid \mathbf{x}) - \ln p(\mathbf{z}) \right]$$

We consider **amortized inference**: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

In other words, a single parameterization for each new input **x**.

Moreover, we use **reparameterization trick**:

It reduces the variance of the gradients. It allows to get randomness outside **z**.

 $z = \mu + \sigma \cdot \varepsilon$

Generations

Reconstruction

Very Deep VAE

67 Child, R. "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images." ICLR 2021

68 Gatopoulos, I., and Tomczak, J.M., "Self-Supervised Variational Auto-Encoders." arXiv preprint arXiv:2010.02014 (2020).

• Here: the likelihood-based generative models.

- Here: the likelihood-based generative models.
- We skipped Generative Adversarial Nets & others.

- Here: the likelihood-based generative models.
- We skipped Generative Adversarial Nets & others.
- Why generative modeling?

 $p(\mathbf{x}, y) = p(y \mid \mathbf{x}) p(\mathbf{x})$

- Here: the likelihood-based generative models.
- We skipped Generative Adversarial Nets & others.
- Why generative modeling?

 $p(\mathbf{x}, y) = p(y \mid \mathbf{x}) p(\mathbf{x})$

- Important directions:
 - ➡ Better uncertainty quantification
 - → New parameterization (new neural networks)
 - Out-of-Distribution
 - ➡ Continual learning

THANK YOU FOR YOUR ATTENTION

Jakub M. Tomczak Computational Intelligence group Vrije Universiteit Amsterdam

Webpage: https://jmtomczak.github.io/

Github: https://github.com/jmtomczak

Twitter: https://twitter.com/jmtomczak