Deep Generative Modeling with
Variational Auto-Encoders

Jakub M. Tomczak




INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is intelligence?

: VU



INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is intelligence?

: VU



INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is intelligence?

What is artificial intelligence?

4 VU



INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is intelligence?

What is artificial intelligence?




INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is intelligence?

What is artificial intelligence?




INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is intelligence?

What is artificial intelligence?

Decision/action

Information S ‘ —
: VU



INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is intelligence?

What is artificial intelligence?

Decision/action

Information S —
8 0001101010011... VUk



INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is artificial intelligence?
e Information processing

e Information storing

e Information transmission

: VU



INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is artificial intelligence?
e Information processing

e Information storing

e Information transmission

e Decision making

. VU



INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is artificial intelligence?
e Information processing

e Information storing Learning
Knowledge representation

Models...

e Information transmission

e Decision making

; VU



INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is artificial intelligence?
e Information processing

e Information storing Learning
Knowledge representation

Models...

e Information transmission

e Decision making

The question is how to formalize the problem of Al?
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Information (a quick recap)
We have a random source of data x.

We can quantify the uncertainty of this source by calculating

the entropy: . .
Claude Shannon

HIx] = — ) p(x)log p(x)

Entropy is max if all x’s are equiprobable.

Entropy is min if the probability of one value is 1.
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Information (a quick recap)
We have a random source of data x.

We can quantify the uncertainty of this source by calculating

the entropy: . .
Claude Shannon

Hix] = - )’ p()log p(x)

Optimal message length ~ the entropy.
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INFORMATION, INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

Information (a quick recap)
We have two random sources: x and y.

We can quantify the uncertainty of them by calculating
the joint entropy:

Iaude Shannon

HIx, y] = — )’ p(x, y)log p(x, y)

X,y
or the conditional entropy:

Hly|x] == ) p(x,y)logp(y|x)
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: . H(X) H(Y)
Mutual Information (a quick recap)

We have two random sources: x and y.

We can quantify how much information is shared

H(X,Y)

by the two sources:
I[x; y] = Hly] — H[y|x]

or how much knowing one source reduces uncertainty about the other.
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The goal of Al is to maximize the mutual information between (x, y) and
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ARTIFICIAL INTELLIGENCE

We have two random sources: x (e.g., images) and y (e.g., decisions).
We have also a model m (a representation of a world).

The goal of Al is to maximize the mutual information between (x, y) and
m:

I[(x,y); m] = H[x, y] — H[x, y|m]

Entropy of the world That’s the “real” goal!
(model has no influence on that) VU g(
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ARTIFICIAL INTELLIGENCE

The goal of Al is to maximize the mutual information between (x, y) and
m

(or minimize H[x, y | m], i.e., minimize uncertainty of the world):

Hlx,y|m] = Z p(x,y, m)|log p(y | x,m) + log p(x|m)]

X,y,m
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ARTIFICIAL INTELLIGENCE

The goal of Al is to maximize the mutual information between (x, y) and
m

(or minimize H[x, y | m], i.e., minimize uncertainty of the world):

Hlx,y|m] = Z p(x,y, m)|log p(y | x,m) + log p(x|m)]

X,y,m f

A model for A model for
decision making understanding
the world.
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ARTIFICIAL INTELLIGENCE

The goal of Al is to maximize the mutual information between (x, y) and
m (or minimize H[x, y | m], i.e., minimize uncertainty of the world).

In order to achieve that, Al should focus on learning two models:

e A model for decision making: p(y | x, m)

e A model for understanding the world: p(x | m)

. VU



WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of Al is focused on the decision making part only!
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The bulk of Al is focused on the decision making part only!
Example: Let’s say we have a model that is well trained.

p(y = cat|x) = 0.90
p(y = dog|x) = 0.05
p(y = horse|x) = 0.05
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WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of Al is focused on the decision making part only!
Example: Let’s say we have a model that is well trained.

pEy = (cjat|r))= 00.900 péy = gat|r))= 06005
p(y =dog|x) =0.05 p(y =dog|x) =0.05
p(y = horse|x) = 0.05 p(y = horse|x) = 0.90

But after adding a little noise it could fail completely...
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IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?

CIFAR-10 original image CIFAR-10 labels CIFAR-10 original image CIFAR-10 labels Adversarial image CIFAR-10 labels
"dog" No sticker "dog" + "bird" sticker Used to get adversary From "dog" to "frog" Used to get adversary
truck truck truck
ship ® o ship ® o ship
horse horse horse
frog frog frrg99% |
dog94% ddg dog
deer deer deer
kat cat cat
brs D baozs D b
lutomobile automobile automobile
hirplane airplane airplane
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probability Probability Probability

328. Fort, “Pixels still beat text: Attacking the OpenAl CLIP model with text patches and adversarial pixel perturbations”, |Link|VU k


https://stanislavfort.github.io/2021/03/05/OpenAI_CLIP_stickers_and_adversarial_examples.html
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Let’s assume we have a perfectly trained neural net.

What happens if we add (adversarial) noise to an image?
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It fails completely...

338. Fort, “Pixels still beat text: Attacking the OpenAl CLIP model with text patches and adversarial pixel perturbations”, |Link|VU
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https://stanislavfort.github.io/2021/03/05/OpenAI_CLIP_stickers_and_adversarial_examples.html

IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.

Reference Noise from Reconstruction
targets

34A. Kuzina, M. Welling, J.M. Tomczak, “Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks”, [Link] VU k
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IS LEARNING CLASSIFIERS ENOUGH?

Let’s assume we have a perfectly trained neural net.
What happens if we add (adversarial) noise to an image?

Noise from )
Reference Reconstruction

It fails completely... targets

35A. Kuzina, M. Welling, J.M. Tomczak, “Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks”, [Link] VU k


https://arxiv.org/abs/2103.06701
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DEEP GENERATIVE MODELING: WHY DO WE NEED THEM?

p(y|x) p(x,y) = ply|x) p(x)
p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low

= uncertain decision!
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DEEP GENERATIVE MODELING: WHY DO WE NEED THEM?
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p(y|x) p(x,y) = ply|x) p(x)
p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low

= uncertain decision!

Thus, learning the conditional is only a part of the story!

How can we learn p(x)? VU k
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DEEP GENERATIVE MODELING: WHY DO WE NEED THEM?

We clearly see that training a neural
network (i.e., a conditional distribution):

p(y|x) = softmax (NN(X))

is not enough! |
Granny Smith

Pod  99T%
library 0.0%
pizza 0.0%
toaster 0.0%
dough 0.0%
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DEEP GENERATIVE MODELING: WHY DO WE NEED THEM?

We clearly see that training a neural
network (i.e., a conditional distribution):

p(y|x) = softmax (NN(X))

is not enough!
Granny Smith

What can we do then? _I. :
ibrary 0.0%

pizza 0.0%

. . 3 toaster 0.0%

Or, how to modify the wrong certainty- dough 0.0%

. VUf¥



DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models

Autoregressive models Flow-based models

(e.g., PixelCNN) (e.g., RealNVP) Latent variable models

Implicit models Prescribed models
(e.g., GANs) (e.g., VAES)
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DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models
+ Energy-based models

Autoregressive models Flow-based models Latent variable models
(e.g., PixelCNN) (e.g., RealNVP) ‘
Implicit models Prescribed models
(e.g., GANs) (e.g., VAES)

+ Diffusion models
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DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Generative models Training Likelihood Sampling Lossy compression Lossless compression

Autoregressive models  stable exact slow no yes
Flow-based models stable exact fast/slow no yes
Implicit models unstable no fast no no
Prescribed model stable approximate fast yes no

. VUf¥



DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

45

“ i want to talk to you . ”

“i want to be with you . ”

“i do n't want to be with you . ”

i do n't want to be with you .

she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Text analysis

label

@
\ (o

\ 7%

I query
Active query
selection

Active Learning

Image analysis

Provided | Generated

-
e e

Reinforcement Learning

Audio analysis
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Medical data

and more...
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DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models

Autoregressive models Flow-based models

(e.g., PixelCNN) (e.g., RealNVP) Latent variable models

Implicit models Prescribed models
(e.g., GANs) (e.g., VAESs)
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VARIATIONAL AUTO-ENCODERS

Let’s consider a latent variable p(x|z)

model where we distinguish:

e latent variablesz € Z¥ o(2) %

 observable variables x € P

. : Generative process:
Latent variables lie on a

low-dimensional manifold. 1.z ~ p(z)
2. X ~ p(x|z)
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Let’s consider a latent variable p(x|z)

model where we distinguish:

e latent variablesz €¢ M o(2) %

 observable variables x € P

. : Generative process:
Latent variables lie on a

low-dimensional manifold. 1.z ~ p(z)
2. x ~ p(x|z)
The objective function:

Inp(x) = In Jp(x |z)p(z) dz
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VARIATIONAL AUTO-ENCODERS

Let’s consider a latent variable p(x|z)

model where we distinguish:

e latent variablesz €¢ M o(2) %

 observable variables x € P

. : Generative process:
Latent variables lie on a

low-dimensional manifold. 1.z ~ p(z)
2. x ~ p(x|z)
The objective function:

49

Inp(x) = In Jp(x |z)p(z) dz  The integral is intractable...
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

| J q4(Z) Variational posteriors
= In

p(x|z)p(z) dz
q4(2)
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

= an W) p(x|z)p(z) dz

q5(2)
p(X | Z)p (Z)
= In lEZNCI(/;(Z) [ q¢(z) ]
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

= an W) p(x|z)p(z) dz
qy(2) " _
p(x|z)p(z)

q4(Z)

>FE, . In pix|2)p(@) Jensen’s inequality
2~qy(2) (Z)
d¢

=Ink

2~q4(2)
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

= an W) p(x|z)p(z) dz
qy(2) " _
p(x|z)p(z)

q4(Z)

@erq @ 1N px|z)p(2) Jensen’s inequality
’ q4(Z)

=Ink

2~q4(2)
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

= an W) p(x|z)p(z) dz
qy(2) " _
p(x|z)p(z)

B2
p(x|2)p(z)
q4(Z)

=Ink

2~q4(2)

2 [EZN%(Z) In

= Eye gy [INP(X]2) + 1 p(2) — In g,(2)|
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In [p(X |2)p(2) dz

= an W) p(x|z)p(z) dz
qy(2) " _
p(x|z)p(z)

- q4(2)
p(x|2)p(z)
q4(Z)

=Ink

2~q4(2)

2 [EZNCI(p(Z) In

=[E _ln p(x|z)+Inp(z) —In q¢(z)]

2~q(2)

_F In p(x|2)] — E,_y 0 [m 44(2) — In p(z)]

2~q,(2)

VU¥
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VARIATIONAL AUTO-ENCODERS

Inp(x) =In JP(X |2)p(2) dz

Reconstruction error “Regularization” term

VU¥
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VARIATIONAL AUTO-ENCODERS

Inp(x) 2 E,y g0 [PX12)] ~ E, lln gy(z]X) — In p(z)]

ELBO: Evidence Lower Bound

58Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014 VU k



VARIATIONAL AUTO-ENCODERS

Inp(x) 2 E,y g0 [PX12)] ~ E, lln gy(z]X) — In p(z)]

We consider amortized inference: g,,(7 | X)

In other words, a single parameterization for each new input x.
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VARIATIONAL AUTO-ENCODERS

Inp(x) 2 E,y g0 [PX12)] ~ E, lln gy(z]X) — In p(z)]

We consider amortized inference: g,,(7 | X)

In other words, a single parameterization for each new input x.

A

. . . e~ N(0,
Moreover, we use reparameterization trick: o
Every Gaussian variable could be defined as:
I=U+O0-E

where € ~ 4(0,1)

60Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014



VARIATIONAL AUTO-ENCODERS

Inp(x) 2 E,y g0 [PX12)] ~ E, lln gy(z]X) — In p(z)]

We consider amortized inference: g,,(7 | X)

In other words, a single parameterization for each new input x.

A

° ° ° € NN )
Moreover, we use reparameterization trick: o
It reduces the variance of the gradients.
It allows to get randomness outside z.
I=u+o-¢

61Kingma, D.P., and Welling, M.. "Auto-encoding variational bayes." ICLR 2014



VARIATIONAL AUTO-ENCODERS

Bottom-up path Top-down path
O
O
U
0
1
[
[
O/
O
0/
pool unpool

res block topdown block
res block topdown block
res block topdown block

Input Reconstruction

Generations Very Deep VAE
Ul

62Child, R. "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images." ICLR 2021



VARIATIONAL AUTO-ENCODERS
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I :
i) Generative Model ii) Inference Model
Generations Hierarchical VAE 5
63Gatopoulos, ., and Tomczak, J.M., "Self-Supervised Variational Auto-Encoders." arXiv preprint arXiv:2010.02014 (2020).
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e Here: the likelihood-based generative models.
e We skipped Generative Adversarial Nets & others.
e Why generative modeling?
pX,y) =p(y|x) p(x)
e Important directions:

= Better uncertainty quantification

= New parameterization (new neural networks)
= Qut-of-Distribution

= Continual learning
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BLOG ABOUT DEEP GENERATIVE MODELING

If you are interested in going deeper into deep generative
modeling, please take a look at my blog: [Blog]

- Intro: [Link]
- ARMs: [Link]

- Flows: [Link], [Link]
- VAEs: [Link], [Link]
- Hybrid modeling: [Link]
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https://jmtomczak.github.io/blog.html
https://jmtomczak.github.io/blog/1/1_introduction.html
https://jmtomczak.github.io/blog/2/2_ARM.html
https://jmtomczak.github.io/blog/3/3_flows.html
https://jmtomczak.github.io/blog/5/5_IDF.html
https://jmtomczak.github.io/blog/4/4_VAE.html
https://jmtomczak.github.io/blog/7/7_priors.html
https://jmtomczak.github.io/blog/6/6_hybrid.html

THANK YOU FOR YOUR ATTENTION

Jakub M. Tomczak

Computational Intelligence group

Vrije Universiteit Amsterdam
Webpage: https:/jmtomczak.github.io/
Github: https://github.com/jmtomczak

Twitter: https://twitter.com/jmtomczak



