Deep Generative Modeling with Variational Auto-Encoders

Jakub M. Tomczak

What is intelligence?

What is **intelligence**?

• • •

What is intelligence?

...

What is intelligence?

. . .

What is intelligence?

...

What is **intelligence**?

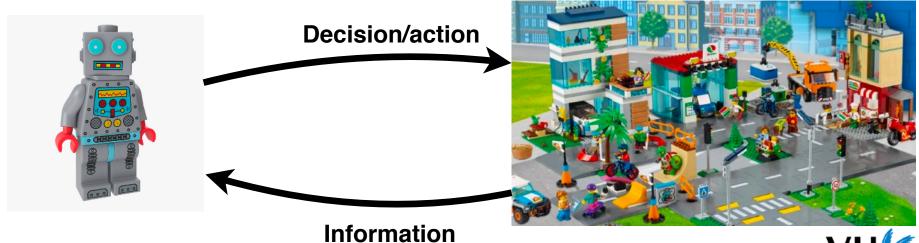
...



What is **intelligence**?

. . .

What is **artificial intelligence**?



0001101010011...

- Information processing
- Information storing
- Information transmission

- Information processing
- Information storing
- Information transmission
- Decision making

What is **artificial intelligence**?

- Information processing
- Information storing
- Information transmission
- Decision making

Learning
Knowledge representation
Models...

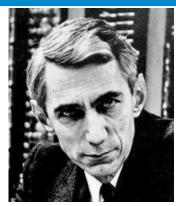
What is **artificial intelligence**?

- Information processing
- Information storing
- Information transmission
- Decision making

Learning
Knowledge representation
Models...

The question is how to formalize the problem of Al?

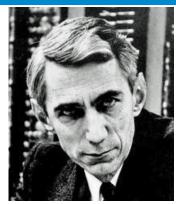
Information (a quick recap)



Claude Shannon

Information (a quick recap)

We have a random source of data x.



Claude Shannon

Information (a quick recap)

We have a random source of data x.

We can quantify the **uncertainty** of this source by calculating **the entropy**:

$$\mathbb{H}[x] = -\sum_{x} p(x) \log p(x)$$

Claude Shannon

Information (a quick recap)

We have a random source of data x.

We can quantify the **uncertainty** of this source by calculating **the entropy**:



Claude Shannon

$$\mathbb{H}[x] = -\sum_{x} p(x) \log p(x)$$

Entropy is max if all x's are equiprobable.

Entropy is min if the probability of one value is 1.

Information (a quick recap)

We have a random source of data x.

We can quantify the **uncertainty** of this source by calculating **the entropy**:



Claude Shannon

$$\mathbb{H}[x] = -\sum_{x} p(x) \log p(x)$$

Optimal message length \approx the entropy.

Information (a quick recap)

We have two random sources: x and y.

We can quantify the uncertainty of them by calculating the joint entropy:

$$\mathbb{H}[x,y] = -\sum_{x,y} p(x,y) \log p(x,y)$$

or the conditional entropy:

$$\mathbb{H}[y \mid x] = -\sum_{x,y} p(x,y) \log p(y \mid x)$$

Mutual Information (a quick recap)

We have two random sources: x and y.

Mutual Information (a quick recap)

We have two random sources: x and y.

We can quantify how much information is shared

by the two sources:

$$H(X) \qquad H(Y) \qquad H(Y|X)$$

$$H(X|Y) \qquad H(Y|X)$$

$$\mathbb{I}[x; y] = \mathbb{H}[y] - \mathbb{H}[y \mid x]$$

Mutual Information (a quick recap)

We have two random sources: x and y.

We can quantify how much information is shared

by the two sources:

$$H(X) = H(X|Y) = H(Y|X)$$

$$H(X|Y) = H(X,Y)$$

$$\mathbb{I}[x; y] = \mathbb{H}[y] - \mathbb{H}[y|x]$$

or how much knowing one source reduces uncertainty about the other.

We have two random sources: x (e.g., images) and y (e.g., decisions).

We have two random sources: x (e.g., images) and y (e.g., decisions).

We have also a model m (a representation of a world).

We have two random sources: x (e.g., images) and y (e.g., decisions).

We have also a model m (a representation of a world).

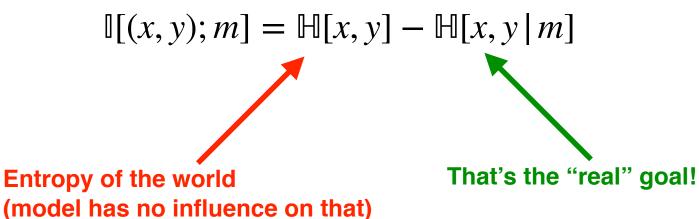
The **goal** of AI is to **maximize** the **mutual information** between (x, y) and m:

$$\mathbb{I}[(x, y); m] = \mathbb{H}[x, y] - \mathbb{H}[x, y \mid m]$$

We have two random sources: x (e.g., images) and y (e.g., decisions).

We have also a model m (a representation of a world).

The **goal** of Al is to **maximize** the **mutual information** between (x, y) and m:



The **goal** of AI is to **maximize** the **mutual information** between (x, y) and m

(or minimize $\mathbb{H}[x, y \mid m]$, i.e., minimize uncertainty of the world):

$$\mathbb{H}[x, y \,|\, m] = \sum_{x,y,m} p(x, y, m) \left[\log p(y \,|\, x, m) + \log p(x \,|\, m) \right]$$

The **goal** of AI is to **maximize** the **mutual information** between (x, y) and m

(or minimize $\mathbb{H}[x,y|m]$, i.e., minimize uncertainty of the world):

$$\mathbb{H}[x,y \mid m] = \sum_{x,y,m} p(x,y,m) \left[\log p(y \mid x,m) + \log p(x \mid m) \right]$$

A model for decision making

A model for understanding the world.

The **goal** of AI is to **maximize** the **mutual information** between (x, y) and m (or minimize $\mathbb{H}[x, y \mid m]$, i.e., minimize uncertainty of the world).

In order to achieve that, AI should focus on learning two models:

- A model for decision making: p(y | x, m)
- A model for understanding the world: $p(x \mid m)$

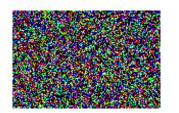
WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused on the decision making part **only**!

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused on the decision making part **only**! Example: Let's say we have a model that is well trained.

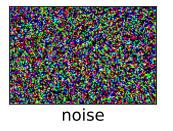
 $p(y = cat|\mathbf{x}) = 0.90$ $p(y = dog|\mathbf{x}) = 0.05$ $p(y = horse|\mathbf{x}) = 0.05$



WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused on the decision making part **only**! Example: Let's say we have a model that is well trained.

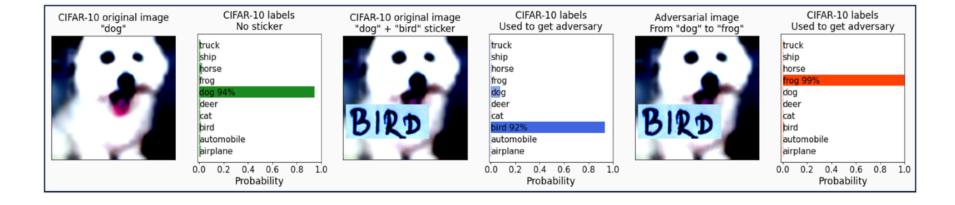
 $p(y = cat|\mathbf{x}) = 0.90$ $p(y = dog|\mathbf{x}) = 0.05$ $p(y = horse|\mathbf{x}) = 0.05$



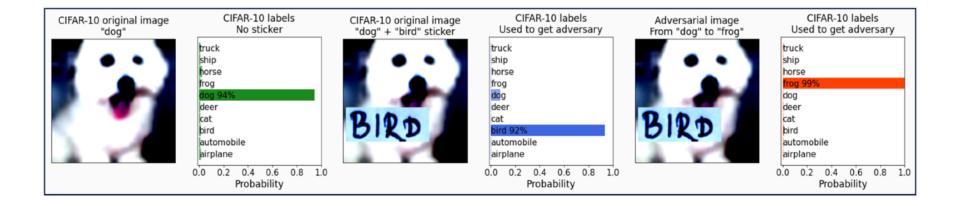
 $p(y = cat|\mathbf{x}) = 0.05$ $p(y = dog|\mathbf{x}) = 0.05$ $p(y = horse|\mathbf{x}) = 0.90$

But after adding a little noise it could fail completely...

Let's assume we have a perfectly trained neural net. What happens if we add (adversarial) noise to an image?

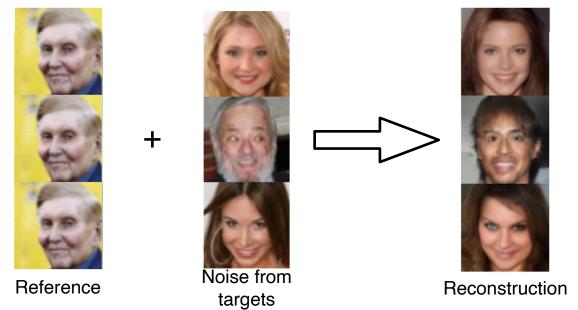


Let's assume we have a perfectly trained neural net. What happens if we add (adversarial) noise to an image?

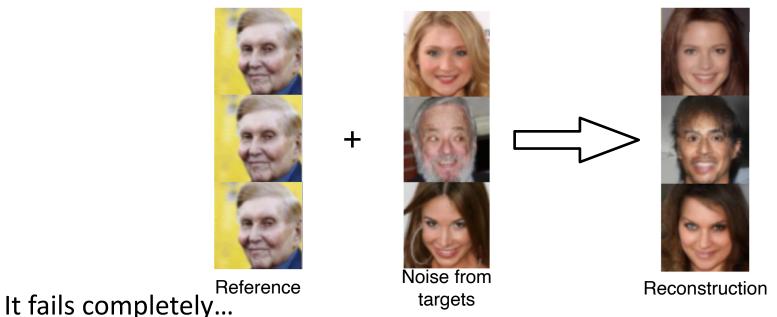


It fails completely...

Let's assume we have a perfectly trained neural net. What happens if we add (adversarial) noise to an image?

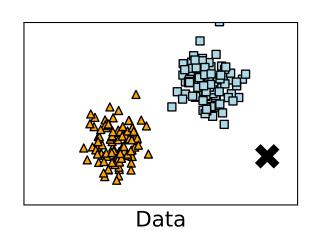


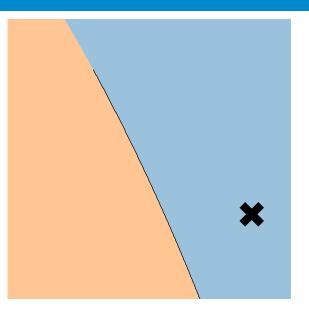
Let's assume we have a perfectly trained neural net. What happens if we add (adversarial) noise to an image?

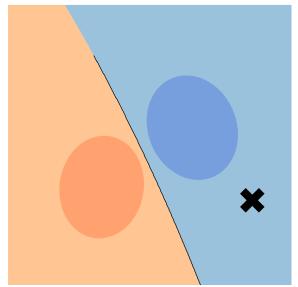


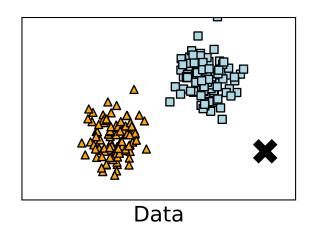
35A. Kuzina, M. Welling, J.M. Tomczak, "Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks", [Link]

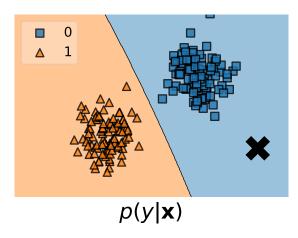
DEEP GENERATIVE MODELING: WHY DO WE NEED THEM?

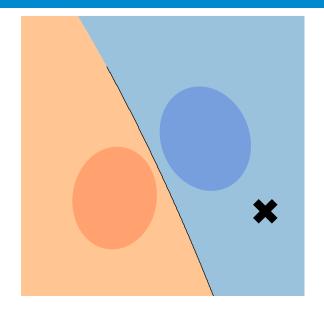




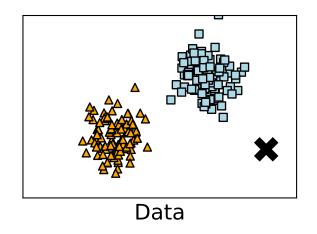


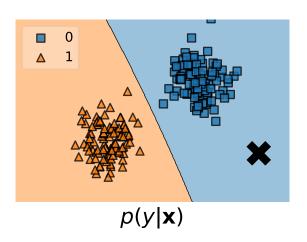




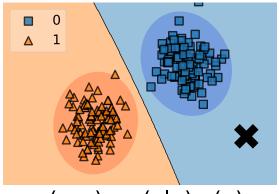


 $p(blue|\mathbf{x})$ is high = certain decision!



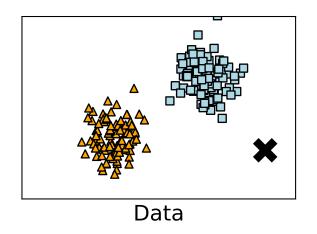


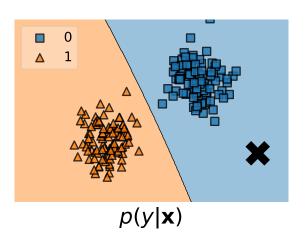
 $p(blue|\mathbf{x})$ is high = certain decision!



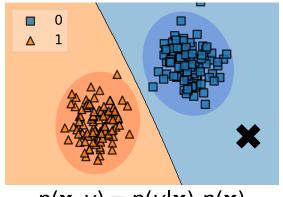
$$p(\mathbf{x}, y) = p(y|\mathbf{x}) \ p(\mathbf{x})$$

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!





 $p(blue|\mathbf{x})$ is high = certain decision!



 $p(\mathbf{x}, y) = p(y|\mathbf{x}) \ p(\mathbf{x})$

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!

Thus, learning the conditional is only a part of the story! How can we learn p(x)?

We clearly see that training a neural network (i.e., a conditional distribution):

$$p(y | \mathbf{x}) = \operatorname{softmax} (NN(\mathbf{x}))$$

is not enough!

Granny Smith	0.1%
iPod	99.7%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.0%

We clearly see that training a neural network (i.e., a conditional distribution):

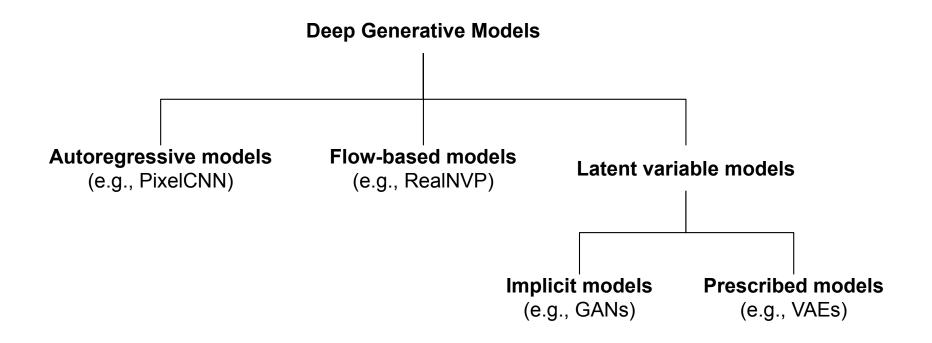
$$p(y | \mathbf{x}) = \operatorname{softmax} (NN(\mathbf{x}))$$

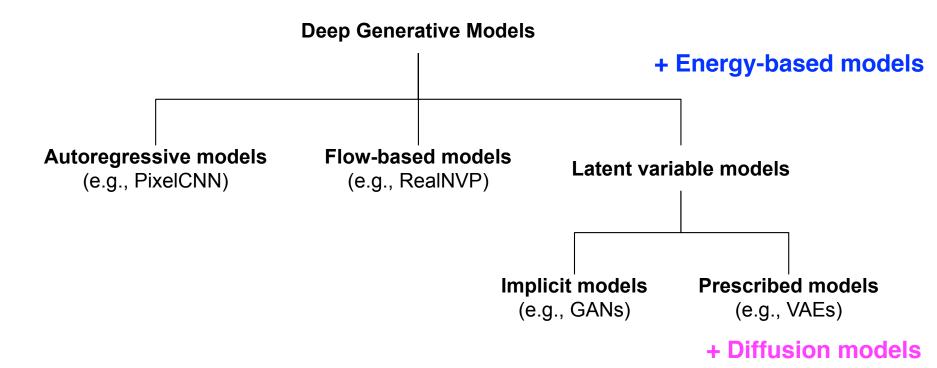
is not enough!

What can we do then?

Or, how to modify the wrong certainty?

The state of the s	
Granny Smith	0.1%
iPod	99.7%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.0%





Generative models	Training	Likelihood	Sampling	Lossy compression	Lossless compression
Autoregressive models	stable	exact	slow	no	yes
Flow-based models	stable	exact	fast/slow	no	yes
Implicit models	unstable	no	fast	no	no
Prescribed model	stable	approximate	fast	yes	no

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

" i want to talk to you . " $\!\!\!\!\!$

"i want to be with you . "
"i do n't want to be with you . "
i do n't want to be with you .

she did n't want to be with you .

he was silent for a long moment .

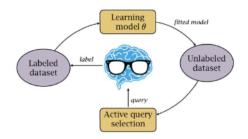
 $he \ was \ silent \ for \ a \ moment \ .$

 $it \ was \ quiet \ for \ a \ moment \ .$

it was dark and cold . there was a pause .

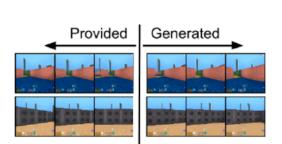
it was my turn.

Text analysis



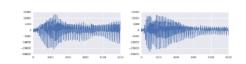
Active Learning

Image analysis

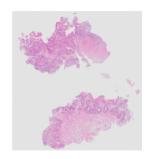


Reinforcement Learning

Graph analysis

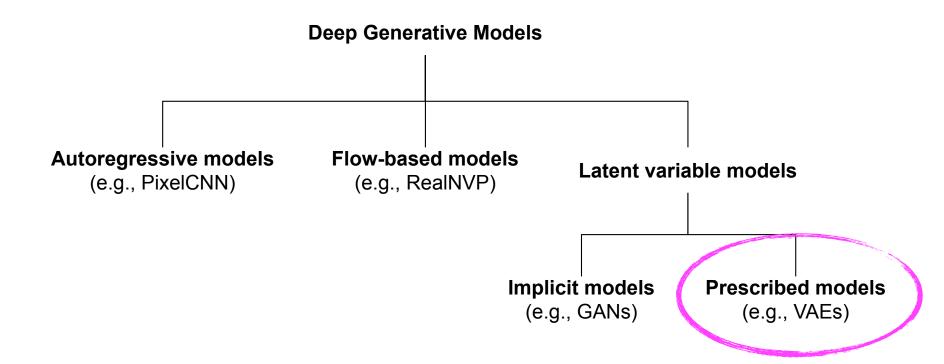


Audio analysis



Medical data

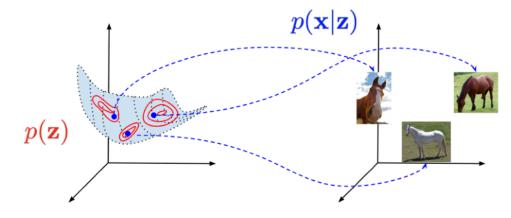
and more...



Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathcal{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a **low-dimensional manifold**.



Generative process:

1.
$$\mathbf{z} \sim p(\mathbf{z})$$

2.
$$\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{z})$$

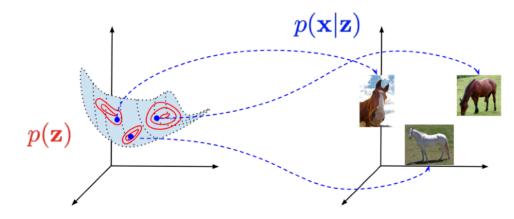
Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathcal{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a **low-dimensional manifold**.

The objective function:

$$\ln p(\mathbf{x}) = \ln \left[p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, \, \mathrm{d}\mathbf{z} \right]$$



Generative process:

1.
$$\mathbf{z} \sim p(\mathbf{z})$$

2.
$$\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{z})$$

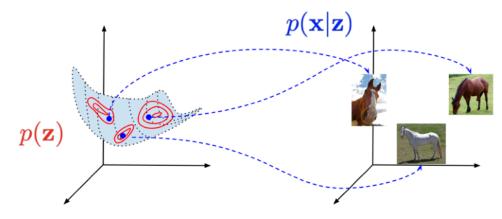
Let's consider a latent variable model where we distinguish:

- latent variables $\mathbf{z} \in \mathcal{Z}^M$
- observable variables $\mathbf{x} \in \mathcal{X}^D$

Latent variables lie on a low-dimensional manifold.

The objective function:

$$\ln p(\mathbf{x}) = \ln \left| p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \right| \, \mathrm{d}\mathbf{z}$$



Generative process:

1.
$$\mathbf{z} \sim p(\mathbf{z})$$

2.
$$\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{z})$$

The integral is intractable...

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\begin{split} \ln p(\mathbf{x}) &= \ln \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \,\, \mathrm{d}\mathbf{z} \\ &= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \,\, \mathrm{d}\mathbf{z} \\ &= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right] \\ &\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right] \quad \text{Jensen's inequality} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right] \end{split}$$

$$\begin{split} \ln p(\mathbf{x}) &= \ln \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \,\, \mathrm{d}\mathbf{z} \\ &= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \,\, \mathrm{d}\mathbf{z} \\ &= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right] \\ &\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right] \quad \text{Jensen's inequality} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right] \end{split}$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) = \ln \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}$$

$$= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right]$$

$$\begin{array}{c|c} \textbf{Reconstruction error} \\ \hline \\ -\mathbf{z} \sim q_{\phi}(\mathbf{z}) \\ \hline \end{array}] \\ -\mathbf{r} \sim \mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \\ \hline \end{array}]$$

"Regularization" term

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right]$$

$$\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} \,|\, \mathbf{x}) - \ln p(\mathbf{z}) \right]$$

ELBO: Evidence Lower Bound

$$\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} \,|\, \mathbf{x}) - \ln p(\mathbf{z}) \right]$$

We consider amortized inference: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

In other words, a single parameterization for each new input x.

$$\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} \mid \mathbf{x}) - \ln p(\mathbf{z}) \right]$$

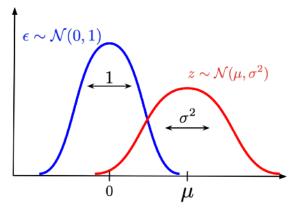
We consider amortized inference: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

In other words, a single parameterization for each new input x.

Moreover, we use reparameterization trick:

Every Gaussian variable could be defined as:

$$z = \mu + \sigma \cdot \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0,1)$



$$\ln p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \,|\, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln q_{\phi}(\mathbf{z} \,|\, \mathbf{x}) - \ln p(\mathbf{z}) \right]$$

We consider amortized inference: $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

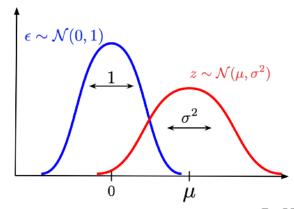
In other words, a single parameterization for each new input x.

Moreover, we use reparameterization trick:

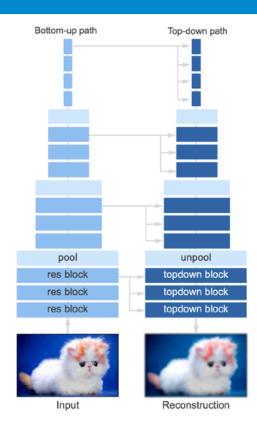
It reduces the variance of the gradients.

It allows to get randomness outside z.

$$z = \mu + \sigma \cdot \varepsilon$$

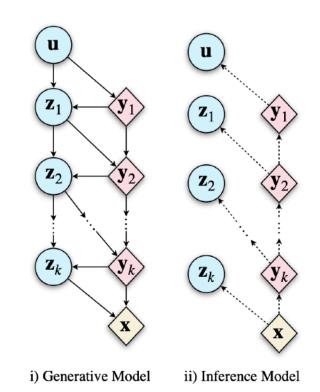


Generations



Very Deep VAE

31v1 downscale selfVAE



Generations

Hierarchical VAE

• Here: the likelihood-based generative models.

- Here: the likelihood-based generative models.
- We skipped Generative Adversarial Nets & others.

- Here: the likelihood-based generative models.
- We skipped Generative Adversarial Nets & others.
- Why generative modeling?

$$p(\mathbf{x}, y) = p(y \mid \mathbf{x}) p(\mathbf{x})$$

- Here: the likelihood-based generative models.
- We skipped Generative Adversarial Nets & others.
- Why generative modeling?

$$p(\mathbf{x}, y) = p(y \mid \mathbf{x}) p(\mathbf{x})$$

- Important directions:
 - → Better uncertainty quantification
 - → New parameterization (new neural networks)
 - → Out-of-Distribution
 - → Continual learning

BLOG ABOUT DEEP GENERATIVE MODELING

If you are interested in going deeper into deep generative modeling, please take a look at my blog: [Blog]

- Intro: [Link]
- ARMs: [Link]
- Flows: [Link], [Link]
- VAEs: [Link], [Link]
- Hybrid modeling: [Link]

THANK YOU FOR YOUR ATTENTION

Jakub M. Tomczak Computational Intelligence group Vrije Universiteit Amsterdam

Webpage: https://jmtomczak.github.io/

Github: https://github.com/jmtomczak

Twitter: https://twitter.com/jmtomczak