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What is artificial intelligence?
e Information processing

e Information storing Learning
Knowledge representation

Models...

e Information transmission

e Decision making

The question is how to formalize the problem of Al?
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Information (a quick recap)
We have a random source of data x.

We can quantify the uncertainty of this source by calculating

the entropy: . .
Claude Shannon

HIx] = — ) p(x)log p(x)

Entropy is max if all x’s are equiprobable.

Entropy is min if the probability of one value is 1.
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Information (a quick recap)
We have a random source of data x.

We can quantify the uncertainty of this source by calculating

the entropy: . .
Claude Shannon

Hix] = - )’ p()log p(x)

Optimal message length ~ the entropy.
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Information (a quick recap)
We have two random sources: x and y.

We can quantify the uncertainty of them by calculating
the joint entropy:

Iaude Shannon

HIx, y] = — )’ p(x, y)log p(x, y)

X,y
or the conditional entropy:

Hly|x] == ) p(x,y)logp(y|x)
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We have two random sources: x and y.

We can quantify how much information is shared

H(X,Y)

by the two sources:
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: . H(X) H(Y)
Mutual Information (a quick recap)

We have two random sources: x and y.

We can quantify how much information is shared

H(X,Y)

by the two sources:
I[x; y] = Hly] — H[y|x]

or how much knowing one source reduces uncertainty about the other.
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The goal of Al is to maximize the mutual information between (x, y) and
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ARTIFICIAL INTELLIGENCE

We have two random sources: x (e.g., images) and y (e.g., decisions).
We have also a model m (a representation of a world).

The goal of Al is to maximize the mutual information between (x, y) and
m:

I[(x,y); m] = H[x, y] — H[x, y|m]

Entropy of the world That’s the “real” goal!
(model has no influence on that) VU g(
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ARTIFICIAL INTELLIGENCE

The goal of Al is to maximize the mutual information between (x, y) and
m

(or minimize H[x, y | m], i.e., minimize uncertainty of the world):

Hlx,y|m] = Z p(x,y, m)|log p(y | x,m) + log p(x|m)]

X,y,m
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ARTIFICIAL INTELLIGENCE

The goal of Al is to maximize the mutual information between (x, y) and
m

(or minimize H[x, y | m], i.e., minimize uncertainty of the world):

Hlx,y|m] = Z p(x,y, m)|log p(y | x,m) + log p(x|m)]

X,y,m f

A model for A model for
decision making understanding
the world.
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ARTIFICIAL INTELLIGENCE

The goal of Al is to maximize the mutual information between (x, y) and
m (or minimize H[x, y | m], i.e., minimize uncertainty of the world).

In order to achieve that, Al should focus on learning two models:

e A model for decision making: p(y | x, m)

e A model for understanding the world: p(x | m)

. VU



WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of Al is focused on the decision making part only!
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WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of Al is focused on the decision making part only!
Example: Let’s say we have a model that is well trained.

p(y = cat|x) = 0.90
p(y = dog|x) = 0.05
p(y = horse|x) = 0.05
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WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of Al is focused on the decision making part only!
Example: Let’s say we have a model that is well trained.

pEy = (cjat|r))= 00.900 péy = gat|r))= 06005
p(y =dog|x) =0.05 p(y =dog|x) =0.05
p(y = horse|x) = 0.05 p(y = horse|x) = 0.90

But after adding a little noise it could fail completely...
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DEEP GENERATIVE MODELING: WHY DO WE NEED THEM?

p(y|x) p(x,y) = ply|x) p(x)
p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low

= uncertain decision!
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p(y|x) p(x,y) = ply|x) p(x)
p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low

= uncertain decision!

Thus, learning the conditional is only a part of the story!

How can we learn p(x)? VU k
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DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Deep Generative Models

Autoregressive models Flow-based models

(e.g., PixelCNN) (e.g., RealNVP) Latent variable models

Implicit models Prescribed models
(e.g., GANs) (e.g., VAES)
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DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?
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“ i want to talk to you . ”

“i want to be with you . ”

“i do n't want to be with you . ”

i do n't want to be with you .

she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .
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Medical data

and more...
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THE TAKE AWAY MESSAGE

e A decision making model is fine but it doesn’t bring
us closer to true* Al.

e Understanding reality and properly quantifying
uncertainty is crucial in Al.

. *whatever it means... VU k



BLOG ABOUT DEEP GENERATIVE MODELING

If you are interested in going deeper into deep generative
modeling, please take a look at my blog: [Blog]

- Intro: [Link]
- ARMs: [Link]

- Flows: [Link], [Link]
- VAEs: [Link], [Link]
- Hybrid modeling: [Link]
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https://jmtomczak.github.io/blog.html
https://jmtomczak.github.io/blog/1/1_introduction.html
https://jmtomczak.github.io/blog/2/2_ARM.html
https://jmtomczak.github.io/blog/3/3_flows.html
https://jmtomczak.github.io/blog/5/5_IDF.html
https://jmtomczak.github.io/blog/4/4_VAE.html
https://jmtomczak.github.io/blog/7/7_priors.html
https://jmtomczak.github.io/blog/6/6_hybrid.html
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