There is no Al without Deep Generative Modelling

Jakub M. Tomczak

What is intelligence?

What is **intelligence**?

• • •

What is intelligence?

...

What is intelligence?

. . .

What is intelligence?

...

What is intelligence?

What is **intelligence**?

...

What is **artificial intelligence**?

0001101010011...

- Information processing
- Information storing
- Information transmission

- Information processing
- Information storing
- Information transmission
- Decision making

What is **artificial intelligence**?

- Information processing
- Information storing
- Information transmission
- Decision making

Learning
Knowledge representation
Models...

What is **artificial intelligence**?

- Information processing
- Information storing
- Information transmission
- Decision making

Learning
Knowledge representation
Models...

The question is how to formalize the problem of Al?

Information (a quick recap)

Claude Shannon

Information (a quick recap)

We have a random source of data x.

Claude Shannon

Information (a quick recap)

We have a random source of data x.

We can quantify the **uncertainty** of this source by calculating **the entropy**:

$$\mathbb{H}[x] = -\sum_{x} p(x) \log p(x)$$

Claude Shannon

Information (a quick recap)

We have a random source of data x.

We can quantify the **uncertainty** of this source by calculating **the entropy**:

Claude Shannon

$$\mathbb{H}[x] = -\sum_{x} p(x) \log p(x)$$

Entropy is max if all x's are equiprobable.

Entropy is min if the probability of one value is 1.

Information (a quick recap)

We have a random source of data x.

We can quantify the **uncertainty** of this source by calculating **the entropy**:

Claude Shannon

$$\mathbb{H}[x] = -\sum_{x} p(x) \log p(x)$$

Optimal message length \approx the entropy.

Information (a quick recap)

We have two random sources: x and y.

We can quantify the **uncertainty** of them by calculating **the joint entropy**:

$$\mathbb{H}[x,y] = -\sum_{x,y} p(x,y) \log p(x,y)$$

Claude Shannon

or the conditional entropy:

$$\mathbb{H}[y \mid x] = -\sum_{x,y} p(x,y) \log p(y \mid x)$$

Mutual Information (a quick recap)

We have two random sources: x and y.

Mutual Information (a quick recap)

We have two random sources: x and y.

We can quantify how much information is shared

by the two sources:

$$H(X) \qquad H(Y) \qquad H(Y|X)$$

$$H(X|Y) \qquad H(Y|X)$$

$$\mathbb{I}[x; y] = \mathbb{H}[y] - \mathbb{H}[y \mid x]$$

Mutual Information (a quick recap)

We have two random sources: x and y.

We can quantify how much information is shared

by the two sources:

$$H(X) = H(X|Y) = H(Y|X)$$

$$H(X|Y) = H(X,Y)$$

$$\mathbb{I}[x; y] = \mathbb{H}[y] - \mathbb{H}[y|x]$$

or how much knowing one source reduces uncertainty about the other.

We have two random sources: x (e.g., images) and y (e.g., decisions).

We have two random sources: x (e.g., images) and y (e.g., decisions).

We have also a model m (a representation of a world).

We have two random sources: x (e.g., images) and y (e.g., decisions).

We have also a model m (a representation of a world).

The **goal** of AI is to **maximize** the **mutual information** between (x, y) and m:

$$\mathbb{I}[(x, y); m] = \mathbb{H}[x, y] - \mathbb{H}[x, y \mid m]$$

We have two random sources: x (e.g., images) and y (e.g., decisions).

We have also a model m (a representation of a world).

The **goal** of Al is to **maximize** the **mutual information** between (x, y) and m:

The **goal** of AI is to **maximize** the **mutual information** between (x, y) and m

(or minimize $\mathbb{H}[x, y \mid m]$, i.e., minimize uncertainty of the world):

$$\mathbb{H}[x, y \,|\, m] = \sum_{x,y,m} p(x, y, m) \left[\log p(y \,|\, x, m) + \log p(x \,|\, m) \right]$$

The **goal** of AI is to **maximize** the **mutual information** between (x, y) and m

(or minimize $\mathbb{H}[x,y|m]$, i.e., minimize uncertainty of the world):

$$\mathbb{H}[x,y \mid m] = \sum_{x,y,m} p(x,y,m) \left[\log p(y \mid x,m) + \log p(x \mid m) \right]$$

A model for decision making

A model for understanding the world.

The **goal** of AI is to **maximize** the **mutual information** between (x, y) and m (or minimize $\mathbb{H}[x, y \mid m]$, i.e., minimize uncertainty of the world).

In order to achieve that, AI should focus on learning two models:

- A model for decision making: p(y | x, m)
- A model for understanding the world: $p(x \mid m)$

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused on the decision making part **only**!

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused on the decision making part **only**! Example: Let's say we have a model that is well trained.

 $p(y = cat|\mathbf{x}) = 0.90$ $p(y = dog|\mathbf{x}) = 0.05$ $p(y = horse|\mathbf{x}) = 0.05$

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused on the decision making part **only**! Example: Let's say we have a model that is well trained.

 $p(y = cat|\mathbf{x}) = 0.90$ $p(y = dog|\mathbf{x}) = 0.05$ $p(y = horse|\mathbf{x}) = 0.05$

 $p(y = cat|\mathbf{x}) = 0.05$ $p(y = dog|\mathbf{x}) = 0.05$ $p(y = horse|\mathbf{x}) = 0.90$

But after adding a little noise it could fail completely...

 $p(blue|\mathbf{x})$ is high = certain decision!

 $p(blue|\mathbf{x})$ is high = certain decision!

$$p(\mathbf{x}, y) = p(y|\mathbf{x}) p(\mathbf{x})$$

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!

 $p(blue|\mathbf{x})$ is high = certain decision!

$$p(\mathbf{x}, y) = p(y|\mathbf{x}) \ p(\mathbf{x})$$

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!

Thus, learning the conditional is only a part of the story! How can we learn p(x)?

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

" i want to talk to you . " $\,$

"i want to be with you . "
"i do n't want to be with you . "
i do n't want to be with you .
she did n't want to be with him .

he was silent for a long moment . he was silent for a moment .

it was quiet for a moment .
it was dark and cold .

there was a pause .

it was my turn.

Text analysis

Active Learning

Image analysis

Reinforcement Learning

Graph analysis

Audio analysis

Medical data

and more...

THE TAKE AWAY MESSAGE

 A decision making model is fine but it doesn't bring us closer to true* AI.

 Understanding reality and properly quantifying uncertainty is crucial in Al.

BLOG ABOUT DEEP GENERATIVE MODELING

If you are interested in going deeper into deep generative modeling, please take a look at my blog: [Blog]

```
- Intro: [Link]
```

- ARMs: [Link]

- Flows: [Link], [Link]

- VAEs: [Link], [Link]

- Hybrid modeling: [Link]

THANK YOU FOR YOUR ATTENTION

Jakub M. Tomczak Computational Intelligence group Vrije Universiteit Amsterdam

Webpage: https://jmtomczak.github.io/

Github: https://github.com/jmtomczak

Twitter: https://twitter.com/jmtomczak