Introduction to Flow-based Generative Models

Jakub M. Tomczak

MORE ABOUT DEEP GENERATIVE MODELING

Blog: <u>https://jmtomczak.github.io/blog.html</u>

Book: <u>https://link.springer.com/book/10.1007/978-3-030-93158-2</u>

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused **only** on the decision making part!

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused **only** on the decision making part! Example: Let's say we have a model that is well trained.

 $p(y = cat | \mathbf{x}) = 0.90$ $p(y = dog | \mathbf{x}) = 0.05$ $p(y = horse | \mathbf{x}) = 0.05$

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

The bulk of AI is focused **only** on the decision making part! Example: Let's say we have a model that is well trained.

But after adding a little noise it could fail completely...

p(blue|x) is high
= certain decision!

p(blue|x) is high
= certain decision!

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!

p(blue|x) is high
= certain decision!

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!

Thus, learning the conditional is only a part of the story! How can we learn p(x)?

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

Generative models	Training	Likelihood	Sampling	Compression	Representation
Autoregressive models	stable	exact	slow	lossless	no
Flow-based models	stable	exact	fast/slow	lossless	yes
Implicit models	unstable	no	fast	no	no
Prescribed models	stable	approximate	fast	lossy	yes
Energy-based models	stable	unnormalized	slow	rather not	yes

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

" i want to talk to you . "

"i want to be with you ." "i do n't want to be with you ." i do n't want to be with you . she did n't want to be with him .

he was silent for a long moment .

he was silent for a moment. it was quiet for a moment. it was dark and cold. there was a pause. **it was my turn.**

Text

13

it was dark and cold . there was a pause . it was my turn .

VU

DEEP G

he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

"i want to talk to you ." "i want to be with you ." "i do n't want to be with you ." i do n't want to be with you . she did n't want to be with him .

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

Text

Images

Graphs

learning

Audio

BASIC RULES FOR DEEP GENERATIVE MODELING

BASIC RULES FOR DEEP GENERATIVE MODELING

Two rules of probability theory:

• Sum rule:

$$p(x) = \sum_{y} p(x, y)$$

• Product rule:

$$p(x, y) = p(x | y)p(y)$$

or

$$p(x, y) = p(y | x)p(x)$$

The objective (typically): the log-likelihood function

```
Given iid data: \mathcal{D} = \{x_1, x_2, \dots, x_N\}
```

A model $p(x \mid \theta)$.

The log-likelihood function is: $\ln p(\mathcal{D} \mid \theta) = \ln \prod_{n=1}^{N} p(x_n \mid \theta)$ $= \sum_{n=1}^{N} \ln p(x_n \mid \theta)$

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^K \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^K \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^{K} \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$
Complex distribution
$$f_1 \qquad f_1 \qquad f_2 \qquad \dots \qquad f_2 \qquad \dots \qquad f_1$$
"latent" space

Known, e.g., Gaussian

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^{K} \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

V

We change a random variable **x** to another random variable **z** using **invertible** transformations, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$: Jacobian must be tractable

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^{K} \left[\mathbf{J}_{f_i}(z_{i-1}) \right]^{-1}$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) \prod_{i=1}^K \left| \mathbf{J}_{f_i}(z_{i-1}) \right|^{-1}$$

Training objective:

$$\ln p(\mathbf{x}) = \ln \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right) - \sum_{i=1}^K \ln \left| \mathbf{J}_{f_i}(z_{i-1}) \right|$$

Remember! Every neural network must be a bijection!

How to formulate invertible layers then?

How to formulate invertible layers then?

1) Coupling layers

$$\begin{aligned} \mathbf{y}_{a} &= \mathbf{x}_{a} \\ \mathbf{y}_{b} &= \exp\left(s\left(\mathbf{x}_{a}\right)\right) \odot \mathbf{x}_{b} + t\left(\mathbf{x}_{a}\right) &\longleftrightarrow \quad \mathbf{x}_{b} &= \left(\mathbf{y}_{b} - t(\mathbf{y}_{a})\right) \odot \exp\left(-s(\mathbf{y}_{a})\right) \\ \mathbf{x}_{a} &= \mathbf{y}_{a} \end{aligned}$$

How to formulate invertible layers then?

1) Coupling layers

$$\begin{aligned} \mathbf{y}_{a} &= \mathbf{x}_{a} \\ \mathbf{y}_{b} &= \exp\left(s\left(\mathbf{x}_{a}\right)\right) \odot \mathbf{x}_{b} + t\left(\mathbf{x}_{a}\right) & \longleftrightarrow \quad \mathbf{x}_{b} &= \left(\mathbf{y}_{b} - t(\mathbf{y}_{a})\right) \odot \exp\left(-s(\mathbf{y}_{a})\right) \\ \mathbf{x}_{a} &= \mathbf{y}_{a} \end{aligned}$$

$$\begin{aligned} \text{Jacobian is tractable!} \\ \det(\mathbf{J}) &= \prod_{j=1}^{D-d} \exp\left(s\left(\mathbf{x}_{a}\right)\right)_{j} = \exp\left(\sum_{j=1}^{D-d} s\left(\mathbf{x}_{a}\right)_{j}\right) \end{aligned}$$

How to formulate invertible layers then?

1) Coupling layers

$$\mathbf{y}_{a} = \mathbf{x}_{a}$$

$$\mathbf{y}_{b} = \exp\left(s\left(\mathbf{x}_{a}\right)\right) \odot \mathbf{x}_{b} + t\left(\mathbf{x}_{a}\right) \iff \mathbf{x}_{b} = \left(\mathbf{y}_{b} - t(\mathbf{y}_{a})\right) \odot \exp\left(-s(\mathbf{y}_{a})\right)$$

$$\mathbf{x}_{a} = \mathbf{y}_{a}$$

Jacobian is tractable!

$$\det(\mathbf{J}) = \prod_{j=1}^{D-d} \exp\left(s\left(\mathbf{x}_{a}\right)\right)_{j} = \exp\left(\sum_{j=1}^{D-d} s\left(\mathbf{x}_{a}\right)_{j}\right)$$

How to formulate invertible layers then?

1) Coupling layers

$$y_{a} = \mathbf{x}_{a}$$

$$y_{b} = \exp\left(s\left(\mathbf{x}_{a}\right)\right) \odot \mathbf{x}_{b} + t\left(\mathbf{x}_{a}\right) \iff \mathbf{x}_{b} = \left(\mathbf{y}_{b} - t(\mathbf{y}_{a})\right) \odot \exp\left(-s(\mathbf{y}_{a})\right)$$

$$\mathbf{x}_{a} = \mathbf{y}_{a}$$

Jacobian is tractable!

$$\det(\mathbf{J}) = \prod_{j=1}^{D-d} \exp\left(s\left(\mathbf{x}_{a}\right)\right)_{j} = \exp\left(\sum_{j=1}^{D-d} s\left(\mathbf{x}_{a}\right)_{j}\right)$$

 $\det(\mathbf{J}) = 1$

FLOWS (FLOW-BASED MODELS)

35 Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPS, 2018

- RealNVP:

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

- GLOW:

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NeurIPS.

- Sylvester Flows:

Hoogeboom, E., Garcia Satorras, V., Tomczak, J., & Welling, M. (2020). The convolution exponential and generalized Sylvester flows. NeurIPS

- Residual Flows & invertible DenseNet Flows

Chen, R. T., Behrmann, J., Duvenaud, D. K., & Jacobsen, J. H. (2019). Residual flows for invertible generative modeling. NeurIPS Perugachi-Diaz, Y., Tomczak, J., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS

POTENTIAL ISSUES WITH FLOWS

If we cut the circle at some point, we cannot invert it back. Why? We don't know where the "start" and the "end" should be joined.

POTENTIAL ISSUES WITH FLOWS

Replacing the positions of the two circles is impossible, unless we leave a "trace".

POTENTIAL ISSUES WITH FLOWS (DEQUANTIZATION)

Many data (e.g., images) take discrete values. To use flows, we need to apply *dequantization*.

POTENTIAL ISSUES WITH FLOWS (DEQUANTIZATION)

still assign positive probability to regions outside the domain.

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right)$$

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right)$$

We don't have the Jacobian here! Why?

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right)$$

We don't have the Jacobian here! Why?

Because it's discrete, so we can only "shuffle" probabilities.

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

Because it's discrete, so we can only "shuffle" probabilities.

$$p(\mathbf{x}) = \pi \left(\mathbf{z}_0 = f^{-1}(\mathbf{x}) \right)$$

We don't have the Jacobian here! Why? Because it's discrete, so we can only "shuffle" probabilities.

Is it still useful then?

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

(v.d. Berg et al., 2020) showed that if we consider $\mathbf{x}, \mathbf{z} \in \mathcal{X} \subset \mathbb{Z}^D$ and $|\mathcal{X}| = M$, then we can only permute probability mass tensors.

$$p_{oldsymbol{x}}(x_1,x_2): egin{array}{ccc} x_1ackslash x_2 & 0 & 1 \ 0 & \left(egin{array}{ccc} 0.1 & 0.3 \ 0.2 & 0.4 \end{array}
ight) \end{array}$$

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

(v.d. Berg et al., 2020) showed that if we consider $\mathbf{x}, \mathbf{z} \in \mathcal{X} \subset \mathbb{Z}^D$ and $|\mathcal{X}| = M$, then we can only permute probability mass tensors.

$$p_{oldsymbol{x}}(x_1,x_2): egin{array}{cccc} x_1ackslash x_2 & 0 & 1 \ 0 & \left(egin{array}{cccc} 0.1 & 0.3 \ 0.2 & 0.4 \end{array}
ight) \end{array}$$

 $\begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{pmatrix}$

(v.d. Berg et al., 2020) showed that if we consider $\mathbf{x}, \mathbf{z} \in \mathcal{X} \subset \mathbb{Z}^D$ and $|\mathcal{X}| = M$, then we can only permute probability mass tensors.

$$p_{oldsymbol{x}}(x_1,x_2): egin{array}{ccc} x_1ackslash x_2 & 0 & 1 \ 0 & \left(egin{array}{ccc} 0.1 & 0.3 \ 0.2 & 0.4 \end{array}
ight) \ \end{array}$$

If we consider an extended ${\mathcal X}$, we can learn a factorized distributions!

If we consider an extended $\mathcal X$, we can learn a factorized distributions!

Ok, what does it mean?

It means that flow-based models are rather useless for finite domains.

BUT, they could learn any distribution for extended or infinite domains!

For details, see Lemma 1 in (v.d. Berg et al., 2020).

How to formulate invertible transformations for integer-valued data? 1. **Coupling layers**

$$\mathbf{y}_{a} = \mathbf{x}_{a}$$
$$\mathbf{y}_{b} = \mathbf{x}_{b} + \lfloor t \left(\mathbf{x}_{a} \right) \rfloor$$

where $\lfloor \cdot \rceil$ is the rounding operator and we use the straight-through estimator (STE) during training.

2. Permutation layers

⁵¹Hoogeboom, E., Peters, J., vd. Berg, R., & Welling, M. (2019). Integer discrete flows and lossless compression. NeuriPS

INTEGER DISCRETE FLOWS

Progressive display of the data stream for images.

⁵²Hoogeboom, E., Peters, J., vd. Berg, R., & Welling, M. (2019). Integer discrete flows and lossless compression. *NeuriPS*

GENERAL INVERTIBLE TRANSFORMATIONS

Proposition 3.1 ([23]) Let us take $\mathbf{x}, \mathbf{y} \in \mathcal{X}$. If binary transformations \circ and \triangleright have inverses \bullet and \blacktriangleleft , respectively, and g_2, \ldots, g_D and f_1, \ldots, f_D are arbitrary functions, where $g_i : \mathcal{X}_{1:i-1} \to \mathcal{X}_i$, $f_i : \mathcal{X}_{1:i-1} \times \mathcal{X}_{i+1:n} \to \mathcal{X}_i$, then the following transformation from \mathbf{x} to \mathbf{y} :

$$y_1 = x_1 \circ f_1(\emptyset, \mathbf{x}_{2:D})$$

$$y_2 = (g_2(y_1) \triangleright x_2) \circ f_2(y_1, \mathbf{x}_{3:D})$$

$$\dots$$

$$y_d = (g_d(\mathbf{y}_{1:d-1}) \triangleright x_d) \circ f_d(\mathbf{y}_{1:d-1}, \mathbf{x}_{d+1:D})$$

$$\dots$$

$$y_D = (g_D(\mathbf{y}_{1:D-1}) \triangleright x_D) \circ f_D(\mathbf{y}_{1:D-1}, \emptyset)$$

is invertible.

VU

53 Tomczak, J. M. (2021). General Invertible Transformations for Flow-based Generative Modeling. ICML Workshop INNF+

Proposition 3.1 ([23]) Let us take $\mathbf{x}, \mathbf{y} \in X$. If binary transformations \circ and \triangleright have inverses \bullet and \blacktriangleleft , respectively, and g_2, \ldots, g_D and f_1, \ldots, f_D are arbitrary functions, where g_i : functions, where g_i : transformation from \mathbf{x} Example:

$$\mathbf{y}_{a} = \mathbf{x}_{a} + \lfloor t (\mathbf{x}_{b}, \mathbf{x}_{c}, \mathbf{x}_{d}) \rceil$$

$$\mathbf{y}_{2} \quad \mathbf{y}_{b} = \mathbf{x}_{b} + \lfloor t (\mathbf{y}_{a}, \mathbf{x}_{c}, \mathbf{x}_{d}) \rceil$$

$$\mathbf{y}_{c} = \mathbf{x}_{c} + \lfloor t (\mathbf{y}_{a}, \mathbf{y}_{b}, \mathbf{x}_{d}) \rceil$$

$$\mathbf{y}_{d} = \mathbf{x}_{d} + \lfloor t (\mathbf{y}_{a}, \mathbf{y}_{b}, \mathbf{y}_{c}) \rceil^{+1:D}$$

$$\mathbf{y}_{D} = (g_{D}(\mathbf{y}_{1:D-1}) \triangleright \mathbf{x}_{D}) \circ f_{D}(\mathbf{y}_{1:D-1}, \emptyset)$$

is invertible.

VU

54 Tomczak, J. M. (2021). General Invertible Transformations for Flow-based Generative Modeling. ICML Workshop INNF+

GENERAL INVERTIBLE TRANSFORMATIONS FOR IDF (EXAMPLE)

Real images

Flow-based models are powerful and theoretically-grounded.

Flow-based models may suffer from serious issues.

Flow-based models are powerful and theoretically-grounded.

Flow-based models may suffer from serious issues.

Flow-based models for **discrete variables with finite domains may not learn any distribution**.

Flow-based models for integer-valued discrete variables seem to be much better option!

Flow-based models are powerful and theoretically-grounded.

Flow-based models may suffer from serious issues.

Flow-based models for **discrete variables with finite domains may not learn any distribution**.

Flow-based models for integer-valued discrete variables seem to be much better option!

We are getting better transformations!

Jakub M. Tomczak Computational Intelligence group Vrije Universiteit Amsterdam

Webpage: https://jmtomczak.github.io/

Github: https://github.com/jmtomczak

Twitter: https://twitter.com/jmtomczak