
Jakub M. Tomczak

Introduction to

Flow-based Generative Models

Blog: https://jmtomczak.github.io/blog.html

Book: https://link.springer.com/book/10.1007/978-3-030-93158-2

MORE ABOUT DEEP GENERATIVE MODELING

https://jmtomczak.github.io/blog.html
https://link.springer.com/book/10.1007/978-3-030-93158-2

The bulk of AI is focused only on the decision making part!

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

3

The bulk of AI is focused only on the decision making part!

Example: Let’s say we have a model that is well trained.

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

4

The bulk of AI is focused only on the decision making part!

Example: Let’s say we have a model that is well trained.

But after adding a little noise it could fail completely…

WHAT HAPPENS IF WE LEARN ONLY DECISION MAKING

5

DEEP GENERATIVE MODELING: WHY DO WE NEED IT?

6

DEEP GENERATIVE MODELING: WHY DO WE NEED IT?

7

DEEP GENERATIVE MODELING: WHY DO WE NEED IT?

8

DEEP GENERATIVE MODELING: WHY DO WE NEED IT?

9

DEEP GENERATIVE MODELING: WHY DO WE NEED IT?

10

Thus, learning the conditional is only a part of the story!

How can we learn p(x)?

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

11

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

12

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

13

Learning

Quering

Labeled
data

Unlabeled
data

Text
Images

Audio

Medical imaging

Active learning

Reinforcement
learning

Graphs

Text synthesis (e.g., chatbots)

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

14

Learning

Quering

Labeled
data

Unlabeled
data

Text
Images

Audio

Medical imaging

Active learning

Reinforcement
learning

Graphs

Learning

Quering

Labeled
data

Unlabeled
data

Text
Images

Audio

Medical imaging

Active learning

Reinforcement
learning

Graphs

Speech synthesis (e.g., chatbots)

Deep fakes

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

15

Learning

Quering

Labeled
data

Unlabeled
data

Text
Images

Audio

Medical imaging

Active learning

Reinforcement
learning

Graphs

Drug discovery

3D structure discovery

Molecular dynamics

DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?

16

Learning

Quering

Labeled
data

Unlabeled
data

Text
Images

Audio

Medical imaging

Active learning

Reinforcement
learning

Graphs

BASIC RULES FOR DEEP GENERATIVE MODELING

17

Two rules of probability theory:

• Sum rule:

• Product rule:

or

p(x) = ∑
y

p(x, y)

p(x, y) = p(x |y)p(y)

p(x, y) = p(y |x)p(x)

BASIC RULES FOR DEEP GENERATIVE MODELING

18

The objective (typically): the log-likelihood function

Given iid data:

A model .

The log-likelihood function is:

𝒟 = {x1, x2, …, xN}
p(x |θ)

ln p(𝒟 |θ) = ln
N

∏
n=1

p(xn |θ)

=
N

∑
n=1

ln p(xn |θ)

BASIC RULES FOR DEEP GENERATIVE MODELING

19

DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

20

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

21

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

22

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

23

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Simple distribution Complex distribution

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

24

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Known, e.g., Gaussian

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

25

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Jacobian must be tractable

We change a random variable x to another random variable z using
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

26

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Invertible neural networks!

We change a random variable x to another random variable z using
invertible transformations, :

Training objective:

x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)

27

p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

ln p(x) = ln π (z0 = f −1(x)) −
K

∑
i=1

ln Jfi(zi−1)

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

28 Remember! Every neural network must be a bijection!

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

29

How to formulate invertible layers then?

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

30

How to formulate invertible layers then?

1) Coupling layers

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

31

ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa) ↔
xb = (yb − t(ya)) ⊙ exp (−s(ya))

xa = ya

How to formulate invertible layers then?

1) Coupling layers

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

32

ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa) ↔
xb = (yb − t(ya)) ⊙ exp (−s(ya))

xa = ya

det(J) =
D−d

∏
j=1

exp (s (xa))j
= exp

D−d

∑
j=1

s (xa)j

Jacobian is tractable!

How to formulate invertible layers then?

1) Coupling layers

2) Permutation layers

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

33

ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa) ↔
xb = (yb − t(ya)) ⊙ exp (−s(ya))

xa = ya

det(J) =
D−d

∏
j=1

exp (s (xa))j
= exp

D−d

∑
j=1

s (xa)j

Jacobian is tractable!

How to formulate invertible layers then?

1) Coupling layers

2) Permutation layers

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

34

ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa) ↔
xb = (yb − t(ya)) ⊙ exp (−s(ya))

xa = ya

det(J) =
D−d

∏
j=1

exp (s (xa))j
= exp

D−d

∑
j=1

s (xa)j

Jacobian is tractable!

det(J) = 1

FLOWS (FLOW-BASED MODELS)

35Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPS, 2018

- RealNVP:

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

- GLOW:

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NeurIPS.

- Sylvester Flows:

Hoogeboom, E., Garcia Satorras, V., Tomczak, J., & Welling, M. (2020). The convolution exponential and generalized Sylvester

flows. NeurIPS

- Residual Flows & invertible DenseNet Flows

Chen, R. T., Behrmann, J., Duvenaud, D. K., & Jacobsen, J. H. (2019). Residual flows for invertible generative modeling. NeurIPS

Perugachi-Diaz, Y., Tomczak, J., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS

FLOW-BASED MODELS (SELECTED)

36

POTENTIAL ISSUES WITH FLOWS

37

A

B

If we cut the circle at some point, we cannot invert it back. Why?

We don’t know where the “start” and the “end” should be joined.

POTENTIAL ISSUES WITH FLOWS

38

Replacing the positions of the two circles is impossible,  
unless we leave a “trace”.

POTENTIAL ISSUES WITH FLOWS (DEQUANTIZATION)

39

Many data (e.g., images) take discrete values. To use flows,

we need to apply dequantization.

POTENTIAL ISSUES WITH FLOWS (DEQUANTIZATION)

40

The problem is that after training a flow-based model, we may

still assign positive probability to regions outside the domain.

We change a random variable x to another random variable z using
invertible transformations, :

x, z ∈ ℤD

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

41

p(x) = π (z0 = f −1(x))

We change a random variable x to another random variable z using
invertible transformations, :

We don’t have the Jacobian here! Why?

x, z ∈ ℤD

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

42

p(x) = π (z0 = f −1(x))

We change a random variable x to another random variable z using
invertible transformations, :

We don’t have the Jacobian here! Why?

Because it’s discrete, so we can only “shuffle” probabilities.

x, z ∈ ℤD

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

43

p(x) = π (z0 = f −1(x))

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

44

Because it’s discrete, so we can only “shuffle” probabilities.

We change a random variable x to another random variable z using
invertible transformations, :

We don’t have the Jacobian here! Why?

Because it’s discrete, so we can only “shuffle” probabilities.

Is it still useful then?

x, z ∈ ℤD

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

45

p(x) = π (z0 = f −1(x))

(v.d. Berg et al., 2020) showed that if we consider and
, then we can only permute probability mass tensors.

x, z ∈ 𝒳 ⊂ ℤD

|𝒳 | = M

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

46

(v.d. Berg et al., 2020) showed that if we consider and
, then we can only permute probability mass tensors.

x, z ∈ 𝒳 ⊂ ℤD

|𝒳 | = M

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

47

(0.1 0.2
0.3 0.4)

(v.d. Berg et al., 2020) showed that if we consider and
, then we can only permute probability mass tensors.

If we consider an extended , we can learn a factorized distributions!

x, z ∈ 𝒳 ⊂ ℤD

|𝒳 | = M

𝒳

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

48

49

If we consider an extended , we can learn a factorized distributions!𝒳

Ok, what does it mean?

It means that flow-based models are rather useless for finite domains.

BUT, they could learn any distribution for extended or infinite domains!

For details, see Lemma 1 in (v.d. Berg et al., 2020).

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

50

How to formulate invertible transformations for integer-valued data?

1. Coupling layers

where is the rounding operator and we use the straight-through
estimator (STE) during training.

2. Permutation layers

ya = xa
yb = xb + ⌊t (xa)⌉

⌊ ⋅ ⌉

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

51Hoogeboom, E., Peters, J., vd. Berg, R., & Welling, M. (2019). Integer discrete flows and lossless compression. NeuriPS

INTEGER DISCRETE FLOWS

52

Progressive display of the data stream for images.
Hoogeboom, E., Peters, J., vd. Berg, R., & Welling, M. (2019). Integer discrete flows and lossless compression. NeuriPS

GENERAL INVERTIBLE TRANSFORMATIONS

53Tomczak, J. M. (2021). General Invertible Transformations for Flow-based Generative Modeling. ICML Workshop INNF+

GENERAL INVERTIBLE TRANSFORMATIONS

54Tomczak, J. M. (2021). General Invertible Transformations for Flow-based Generative Modeling. ICML Workshop INNF+

Example:

GENERAL INVERTIBLE TRANSFORMATIONS FOR IDF (EXAMPLE)

55

Real images RealNVP

IDF IDF-GIT(4) IDF-GIT(8)

Flow-based models are powerful and theoretically-grounded.

Flow-based models may suffer from serious issues.

Flow-based models for discrete variables with finite domains may not learn
any distribution.

Flow-based models for integer-valued discrete variables seem to be much
better option!

We are getting better transformations!

CONCLUSION

56

Flow-based models are powerful and theoretically-grounded.

Flow-based models may suffer from serious issues.

Flow-based models for discrete variables with finite domains may not learn
any distribution.

Flow-based models for integer-valued discrete variables seem to be much
better option!

We are getting better transformations!

CONCLUSION

57

Flow-based models are powerful and theoretically-grounded.

Flow-based models may suffer from serious issues.

Flow-based models for discrete variables with finite domains may not learn
any distribution.

Flow-based models for integer-valued discrete variables seem to be much
better option!

We are getting better transformations!

CONCLUSION

58

:

Jakub M. Tomczak

Computational Intelligence group

Vrije Universiteit Amsterdam

Webpage: https://jmtomczak.github.io/

Github: https://github.com/jmtomczak

Twitter: https://twitter.com/jmtomczak

