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The bulk of AI is focused only on the decision making part! 
Example: Let’s say we have a model that is well trained. 

But after adding a little noise it could fail completely…
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Thus, learning the conditional is only a part of the story!
How can we learn p(x)?
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DEEP GENERATIVE MODELING: WHERE CAN WE USE IT?
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Two rules of probability theory: 

• Sum rule: 
 

• Product rule: 
 

or 
 

p(x) = ∑
y

p(x, y)

p(x, y) = p(x |y)p(y)

p(x, y) = p(y |x)p(x)

BASIC RULES FOR DEEP GENERATIVE MODELING
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The objective (typically): the log-likelihood function 

Given iid data:  

A model . 

The log-likelihood function is: 

 

𝒟 = {x1, x2, …, xN}
p(x |θ)

ln p(𝒟 |θ) = ln
N

∏
n=1

p(xn |θ)

=
N

∑
n=1

ln p(xn |θ)

BASIC RULES FOR DEEP GENERATIVE MODELING
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DEEP GENERATIVE MODELING: HOW WE CAN FORMULATE IT?

20



We change a random variable x to another random variable z using 
invertible transformations, :x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)
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Simple distribution Complex distribution



We change a random variable x to another random variable z using 
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Known, e.g., Gaussian
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We change a random variable x to another random variable z using 
invertible transformations, :x, z ∈ ℝD
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p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

Invertible neural networks!



We change a random variable x to another random variable z using 
invertible transformations, : 

Training objective:

x, z ∈ ℝD

FLOWS (FLOW-BASED MODELS)
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p(x) = π (z0 = f −1(x))
K

∏
i=1

Jfi(zi−1)
−1

ln p(x) = ln π (z0 = f −1(x)) −
K

∑
i=1

ln Jfi(zi−1)



FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

28 Remember! Every neural network must be a bijection!
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How to formulate invertible layers then?

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

30



How to formulate invertible layers then? 

1) Coupling layers
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xa = ya



How to formulate invertible layers then? 

1) Coupling layers

FLOWS (FLOW-BASED MODELS): INVERTIBLE LAYERS

32

 ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa) ↔   xb = (yb − t(ya)) ⊙ exp (−s(ya))

xa = ya

det(J) =
D−d

∏
j=1

exp (s (xa))j
= exp

D−d

∑
j=1

s (xa)j

Jacobian is tractable! 



How to formulate invertible layers then? 

1) Coupling layers 

2) Permutation layers
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How to formulate invertible layers then? 

1) Coupling layers 

2) Permutation layers
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 ya = xa
yb = exp (s (xa)) ⊙ xb + t (xa) ↔   xb = (yb − t(ya)) ⊙ exp (−s(ya))

xa = ya

det(J) =
D−d

∏
j=1

exp (s (xa))j
= exp

D−d

∑
j=1

s (xa)j

Jacobian is tractable! 

det(J) = 1



FLOWS (FLOW-BASED MODELS)

35Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPS, 2018



- RealNVP:  
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803. 

- GLOW: 
Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NeurIPS. 

- Sylvester Flows: 
Hoogeboom, E., Garcia Satorras, V., Tomczak, J., & Welling, M. (2020). The convolution exponential and generalized Sylvester 

flows. NeurIPS 

- Residual Flows & invertible DenseNet Flows 
Chen, R. T., Behrmann, J., Duvenaud, D. K., & Jacobsen, J. H. (2019). Residual flows for invertible generative modeling. NeurIPS 

Perugachi-Diaz, Y., Tomczak, J., & Bhulai, S. (2021). Invertible densenets with concatenated lipswish. NeurIPS

FLOW-BASED MODELS (SELECTED)
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POTENTIAL ISSUES WITH FLOWS
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A

B

If we cut the circle at some point, we cannot invert it back. Why? 
We don’t know where the “start” and the “end” should be joined.



POTENTIAL ISSUES WITH FLOWS
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Replacing the positions of the two circles is impossible,  
unless we leave a “trace”.



POTENTIAL ISSUES WITH FLOWS (DEQUANTIZATION)
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Many data (e.g., images) take discrete values. To use flows,
we need to apply dequantization.



POTENTIAL ISSUES WITH FLOWS (DEQUANTIZATION)
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The problem is that after training a flow-based model, we may 
still assign positive probability to regions outside the domain. 



We change a random variable x to another random variable z using 
invertible transformations, : 

  
  

 

x, z ∈ ℤD

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS
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We change a random variable x to another random variable z using 
invertible transformations, : 

We don’t have the Jacobian here! Why? 
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We change a random variable x to another random variable z using 
invertible transformations, : 

We don’t have the Jacobian here! Why? 
Because it’s discrete, so we can only “shuffle” probabilities. 
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We change a random variable x to another random variable z using 
invertible transformations, : 

We don’t have the Jacobian here! Why? 
Because it’s discrete, so we can only “shuffle” probabilities. 

Is it still useful then?

x, z ∈ ℤD

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS
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p(x) = π (z0 = f −1(x))



(v.d. Berg et al., 2020) showed that if we consider  and 
, then we can only permute probability mass tensors. 

 

x, z ∈ 𝒳 ⊂ ℤD

|𝒳 | = M
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(v.d. Berg et al., 2020) showed that if we consider  and 
, then we can only permute probability mass tensors. 

If we consider an extended , we can learn a factorized distributions!

x, z ∈ 𝒳 ⊂ ℤD

|𝒳 | = M

𝒳

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS
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49

If we consider an extended , we can learn a factorized distributions!𝒳



Ok, what does it mean? 

It means that flow-based models are rather useless for finite domains. 

BUT, they could learn any distribution for extended or infinite domains! 

For details, see Lemma 1 in (v.d. Berg et al., 2020).

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS
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How to formulate invertible transformations for integer-valued data? 
1. Coupling layers 

 
 

where  is the rounding operator and we use the straight-through 
estimator (STE) during training. 

2. Permutation layers

ya = xa
yb = xb + ⌊t (xa)⌉

⌊ ⋅ ⌉

DISCRETE-VALUED INVERTIBLE TRANSFORMATIONS

51Hoogeboom, E., Peters, J., vd. Berg, R., & Welling, M. (2019). Integer discrete flows and lossless compression. NeuriPS



INTEGER DISCRETE FLOWS
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Progressive display of the data stream for images.
Hoogeboom, E., Peters, J., vd. Berg, R., & Welling, M. (2019). Integer discrete flows and lossless compression. NeuriPS



GENERAL INVERTIBLE TRANSFORMATIONS
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GENERAL INVERTIBLE TRANSFORMATIONS
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Example:



GENERAL INVERTIBLE TRANSFORMATIONS FOR IDF (EXAMPLE)
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Real images RealNVP

IDF IDF-GIT(4) IDF-GIT(8)



Flow-based models are powerful and theoretically-grounded. 

Flow-based models may suffer from serious issues. 

Flow-based models for discrete variables with finite domains may not learn 
any distribution. 

Flow-based models for integer-valued discrete variables seem to be much 
better option! 

We are getting better transformations!

CONCLUSION
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