WHY DO WE NEED DEEP GENERATIVE MODELING?

Jakub M. Tomczak 24 November 2019

Introduction

We learn a neural network to classify images:

We learn a neural network to classify images:

We learn a neural network to classify images:

p(**panda**|x)=0.99

...

We learn a neural network to classify images:

We learn a neural network to classify images:

We learn a neural network to classify images:

There is no semantic understanding of images.

This simple example shows that:

- A discriminative model is (probably) not enough.
- We need a notion of uncertainty.
- We need to **understand** the reality.

This simple example shows that:

- A discriminative model is (probably) not enough.
- We need a notion of **uncertainty**.
- We need to **understand** the reality.

A possible solution is generative modeling.

 $p_{\theta}(y|x)$

 $p_{\theta}(y|x)$

 $p_{\theta}(y|x)$

High probability of a **horse**.

Highly probable decision!

High probability of a **horse**.

Highly probable decision!

 $p_{\theta}(x,y) = p_{\theta}(y|x) \ p_{\theta}(x)$

High probability of a horse. X Low probability of the object = Uncertain

decision!

VU

High probability of a **horse**.

Highly probable decision!

 $p_{\theta}(x,y) = p_{\theta}(y|x)(p_{\theta}(x))$ High probability of a horse. Х Low probability of the object Uncertain decision!

WHERE DO WE USE DEEP GENERATIVE MODELING?

" i want to talk to you . " "i want to be with you . " "i do n't want to be with you . " i do n't want to be with you . she did n't want to be with him .

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

Text analysis

Image analysis

Provided

Generated

analysis

Audio analysis

Medical data

and more... VI J

HOW TO FORMULATE GENERATIVE MODELS?

HOW TO FORMULATE GENERATIVE MODELS?

	Training	Likelihood	Sampling	Compression
Autoregressive models (e.g., PixelCNN)	Stable	Exact	Slow	No
Flow-based models (e.g., RealNVP)	Stable	Exact	Fast/Slow	No
Implicit models (e.g., GANs)	Unstable	No	Fast	No
Prescribed models (e.g., VAEs)	Stable	Approximate	Fast	Yes

HOW TO FORMULATE GENERATIVE MODELS?

	Training	Likelihood	Sampling	Compression
Autoregressive models (e.g., PixelCNN)	Stable	Exact	Slow	Νο
Flow-based models (e.g., RealNVP)	Stable	Exact	Fast/Slow	Νο
Implicit models (e.g., GANs)	Unstable	No	Fast	Νο
Prescribed models (e.g., VAEs)	Stable	Approximate	Fast	Yes

GENERATIVE MODELS AS (SPHERICAL) COWS

GENERATIVE MODELS AS (SPHERICAL) COWS

flow-based models

GENERATIVE MODELS AS (SPHERICAL) COWS

flow-based models

latent variable models

Deep latent variable models

Modeling in high-dimensional spaces is difficult.

Modeling in high-dimensional spaces is difficult.

Modeling in high-dimensional spaces is difficult.

Modeling **all dependencies** among pixels:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c=1}^{C} \psi_c(\mathbf{x}_c)$$

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

 $p(\mathbf{x}) = \frac{1}{Z} \prod_{c=1}^{C} \psi_c(\mathbf{x}_c) \qquad \text{problematic}$

A possible solution: Latent Variable Models!

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

Log of marginal distribution:

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

Log of marginal distribution:

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

How to train such model efficiently?

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} \\ &= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \mathrm{d}\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \Big(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \Big) \end{split}$$

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} & \text{Variational posterior} \\ &= \log \int \underbrace{q_{\phi}(\mathbf{z}|\mathbf{x})}_{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right) \end{split}$$

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} \\ &= \underbrace{\log} \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \underbrace{\log p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \mathrm{d}\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \Big[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \Big] - \mathrm{KL} \Big(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \Big) \end{split}$$

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right]}_{\text{Reconstruction error}} - \underbrace{\operatorname{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z})\right)}_{\text{Regularization VU}}$$

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \qquad \text{decoder}$$

$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \qquad \text{encoder}$$

$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \qquad \text{marginal}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right)$$

VU 📉

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \qquad \text{decoder}$$

$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \qquad \text{encoder}$$

$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \qquad \text{marginal}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right)$$

$$= \mathrm{Variational Auto-Encoder } \mathbf{VU} \leq$$

41

Variational posterior (encoder) and likelihood function (decoder) are parameterized by neural networks.

Reparameterization trick: move the stochasticity to independent random variables

$$\mathbf{z} = f(\boldsymbol{\mu}, \boldsymbol{\sigma}; \boldsymbol{\varepsilon}), \text{ where } \boldsymbol{\varepsilon} \sim p(\boldsymbol{\varepsilon})$$

VAE copies input to output through a **bottleneck**. VAE learns a **code** of the data.

VAE copies input to output through a **bottleneck**. VAE learns a **code** of the data.

VAE has a marginal on the latent code. VAE can generate new data.

VAE has a marginal on the latent code. VAE can generate new data.

VAE has a marginal on the latent code. VAE can generate new data.

p(z)

COMMON ISSUES WITH VAES

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \, p_{\lambda}(\mathbf{z})$

Weak decoders \rightarrow bad generations/reconstructions

Weak encoders \rightarrow bad latent representation

Weak marginals \rightarrow bad generations

Variational posteriors \rightarrow what family of distributions?

Others...

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Normalizing flows

Discrete encoders

Hyperspherical dist.

Hyperbolic-normal dist. Group theory Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Normalizing flows

Discrete encoders

Hyperspherical dist.

Hyperbolic-normal dist. Group theory

ELBO($\mathbf{x}; \theta, \phi, \lambda$) ----

Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

Adversarial learning MMD Wasserstein AE

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Normalizing flows

Discrete encoders **Hyperspherical dist.** Hyperbolic-normal dist. Group theory Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

ELBO($\mathbf{x}; \theta, \phi, \lambda$) ----

Adversarial learning MMD Wasserstein AE

VARIATIONAL POSTERIOR IN VAES

Question: How to minimize the KL(q||p)?

In other words: *How to formulate a more flexible family of approximate (variational) posteriors?*

Using Gaussian is not sufficiently **flexible**.

We need a **computationally efficient tool**.

ELBO($\mathbf{x}; \theta, \phi, \lambda$) = log $p_{\vartheta}(\mathbf{x}) - \text{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x}))$

Arvanitidis, G., Hansen, L. K., & Hauberg, S. (2017). Latent space oddity: on the curvature of deep generative models. arXiv preprint arXiv:1710.11379.

Sample from a "simple" distribution: $\mathbf{z}_0 \sim q_0(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mu(\mathbf{x}), \operatorname{diag}(\sigma^2(\mathbf{x})))$

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

Sample from a "simple" distribution: $\mathbf{z}_0 \sim q_0(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mu(\mathbf{x}), \operatorname{diag}(\sigma^2(\mathbf{x})))$

Apply a sequence of K invertible transformations: $f_k : \mathbb{R}^M \to \mathbb{R}^M$

Sample from a "simple" distribution: $\mathbf{z}_0 \sim q_0(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mu(\mathbf{x}), \operatorname{diag}(\sigma^2(\mathbf{x})))$

Apply a sequence of K invertible transformations: $f_k : \mathbb{R}^M \to \mathbb{R}^M$

and the change of variables yields:

56

$$q_K(\mathbf{z}_K|\mathbf{x}) = q_0(\mathbf{z}_0|\mathbf{x}) \prod_{k=1}^K \left| \det \frac{\partial f_k(\mathbf{z}_{k-1})}{\partial \mathbf{z}_{k-1}} \right|^{-1}$$

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

The learning objective (ELBO) with normalizing flows becomes:

$$\begin{aligned} \text{ELBO}(\mathbf{x}; \theta, \phi, \lambda) &= \mathbb{E}_{\mathbf{z}_0 \sim q_0(\mathbf{z}_0 | \mathbf{x})} \Big[\log p_{\theta}(\mathbf{x} | \mathbf{z}_K) \Big] - \text{KL} \Big(q_0(\mathbf{z}_0 | \mathbf{x}) || p_{\lambda}(\mathbf{z}_K) \Big) + \\ &+ \mathbb{E}_{\mathbf{z}_0 \sim q_0(\mathbf{z}_0 | \mathbf{x})} \Big[\sum_{k=1}^K \log \left| \det \frac{\partial f_k(\mathbf{z}_{k-1})}{\partial \mathbf{z}_{k-1}} \right| \Big] \end{aligned}$$

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

The learning objective (ELBO) with normalizing flows becomes:

$$\text{ELBO}(\mathbf{x}; \theta, \phi, \lambda) = \mathbb{E}_{\mathbf{z}_0 \sim q_0(\mathbf{z}_0 | \mathbf{x})} \Big[\log p_{\theta}(\mathbf{x} | \mathbf{z}_K) \Big] - \text{KL} \Big(q_0(\mathbf{z}_0 | \mathbf{x}) || p_{\lambda}(\mathbf{z}_K) \Big) + \\ + \mathbb{E}_{\mathbf{z}_0 \sim q_0(\mathbf{z}_0 | \mathbf{x})} \Big[\sum_{k=1}^K \log \left| \det \frac{\partial f_k(\mathbf{z}_{k-1})}{\partial \mathbf{z}_{k-1}} \right| \Big]$$

The difficulty lies in calculating the Jacobian determinant:

The learning objective (ELBO) with normalizing flows becomes:

$$\begin{aligned} \text{ELBO}(\mathbf{x}; \theta, \phi, \lambda) &= \mathbb{E}_{\mathbf{z}_0 \sim q_0(\mathbf{z}_0 | \mathbf{x})} \Big[\log p_\theta(\mathbf{x} | \mathbf{z}_K) \Big] - \text{KL} \Big(q_0(\mathbf{z}_0 | \mathbf{x}) || p_\lambda(\mathbf{z}_K) \Big) + \\ &+ \mathbb{E}_{\mathbf{z}_0 \sim q_0(\mathbf{z}_0 | \mathbf{x})} \Big[\sum_{k=1}^K \log \left| \det \frac{\partial f_k(\mathbf{z}_{k-1})}{\partial \mathbf{z}_{k-1}} \right| \Big] \end{aligned}$$

The difficulty lies in calculating the Jacobian determinant:

Volume-preserving flows: $\left| \det \frac{\partial f_k(\mathbf{z}_{k-1})}{\partial \mathbf{z}_{k-1}} \right| = 1$ General normalizing flows: $\left| \det \frac{\partial f_k(\mathbf{z}_{k-1})}{\partial \mathbf{z}_{k-1}} \right|$ is "easy" to compute.

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

First, let us take a look at **planar flows** (Rezende & Mohamed, 2015):

$$\mathbf{z}_{k} = \mathbf{z}_{k-1} + \mathbf{u} h(\mathbf{w}^{\top}\mathbf{z}_{k-1} + b)$$

This is equivalent to a residual layer with a **single** neuron.

First, let us take a look at **planar flows** (Rezende & Mohamed, 2015):

$$\mathbf{z}_{k} = \mathbf{z}_{k-1} + \mathbf{u} h(\mathbf{w}^{\top}\mathbf{z}_{k-1} + b)$$

This is equivalent to a residual layer with a **single** neuron.

Can we calculate the Jacobian determinant efficiently?

We can use the matrix determinant lemma to get the Jacobian determinant:

$$\det \frac{\partial \mathbf{z}'}{\partial \mathbf{z}} = 1 + \mathbf{u}^{\top} h' (\mathbf{w}^{\top} \mathbf{z} + b) \mathbf{w}$$

which is **linear** wrt the number of **z**'s.

We can use the matrix determinant lemma to get the Jacobian determinant:

$$\det \frac{\partial \mathbf{z}'}{\partial \mathbf{z}} = 1 + \mathbf{u}^{\top} h' (\mathbf{w}^{\top} \mathbf{z} + b) \mathbf{w}$$

which is **linear** wrt the number of **z**'s.

The bottleneck requires many steps, so how can we improve on that?

1.Can we generalize planar flows?

2. If yes, how can we compute the Jacobian determinant **efficiently**?

GENERALIZING PLANAR FLOWS: SYLVESTER FLOWS

We can control the bottleneck by generalizing **u** and **w** to **A** and **B**.

$$\mathbf{z}_{k} = \mathbf{z}_{k-1} + \mathbf{A} h(\mathbf{B}^{\top}\mathbf{z}_{k-1} + \mathbf{b})$$

How to calculate det of Jacobian?

GENERALIZING PLANAR FLOWS: SYLVESTER FLOWS

We can control the bottleneck by generalizing **u** and **w** to **A** and **B**.

$$\mathbf{z}_{k} = \mathbf{z}_{k-1} + \mathbf{A} h(\mathbf{B}^{\top}\mathbf{z}_{k-1} + \mathbf{b})$$

How to calculate det of Jacobian? Use **Sylvester Determinant Identity**:

$$\det \frac{\partial \mathbf{z}'}{\partial \mathbf{z}} = \det \left(\mathbf{I} + \operatorname{diag} \left(h' (\mathbf{B}\mathbf{z} + \mathbf{b}) \mathbf{B} \mathbf{A} \right) \right)$$

65

v.d. Berg, R., Hasenclever, L., Tomczak, J.M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. UAI 2018

GENERALIZING PLANAR FLOWS: SYLVESTER FLOWS

We can control the bottleneck by generalizing **u** and **w** to **A** and **B**.

$$\mathbf{z}_{k} = \mathbf{z}_{k-1} + \mathbf{A} h(\mathbf{B}^{\mathsf{T}}\mathbf{z}_{k-1} + \mathbf{b})$$

How to calculate det of Jacobian? Use **Sylvester Determinant Identity**:

$$\det \frac{\partial \mathbf{z}'}{\partial \mathbf{z}} = \det \left(\mathbf{I} + \operatorname{diag} \left(h' (\mathbf{B}\mathbf{z} + \mathbf{b}) \mathbf{B} \mathbf{A} \right) \right)$$

OK, but it's very expensive! Can we simplify these calculations?

v.d. Berg, R., Hasenclever, L., Tomczak, J.M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. UAI 2018

SYLVESTER FLOWS

Use of Sylvester Determinant Identity yields:

$$\det \frac{\partial \mathbf{z}'}{\partial \mathbf{z}} = \det \left(\mathbf{I} + \operatorname{diag} \left(h' (\mathbf{B}\mathbf{z} + \mathbf{b}) \mathbf{B} \mathbf{A} \right) \right)$$

Next, we can use **QR decomposition** to represent **A** and **B**:

$$\det \frac{\partial \mathbf{z}'}{\partial \mathbf{z}} = \det \left(\mathbf{I} + \operatorname{diag} \left(h'(\mathbf{R}_B \mathbf{Q}^\top \mathbf{z} + \mathbf{b}) \mathbf{R}_B \mathbf{Q}^\top \mathbf{Q} \mathbf{R}_A \right) \\ = \det \left(\mathbf{I} + \operatorname{diag} \left(h'(\mathbf{R}_B \mathbf{Q}^\top \mathbf{z} + \mathbf{b}) \mathbf{R}_B \mathbf{R}_A \right) \right)$$

 ${f Q}$ columns are orthonormal vectors 67 ${f R}_A,~{f R}_B$ triangular matrices

SYLVESTER FLOWS

Use of Sylvester Determinant Identity yields:

$$\det \frac{\partial \mathbf{z}'}{\partial \mathbf{z}} = \det \left(\mathbf{I} + \operatorname{diag} \left(h' (\mathbf{B}\mathbf{z} + \mathbf{b}) \mathbf{B} \mathbf{A} \right) \right)$$

Next, we can use **QR decomposition** to represent **A** and **B**:

$$\det \frac{\partial \mathbf{z}'}{\partial \mathbf{z}} = \det \left(\mathbf{I} + \operatorname{diag} \left(h'(\mathbf{R}_B \mathbf{Q}^\top \mathbf{z} + \mathbf{b}) \mathbf{R}_B \mathbf{Q}^\top \mathbf{Q} \mathbf{R}_A \right) \\ = \det \left(\mathbf{I} + \operatorname{diag} \left(h'(\mathbf{R}_B \mathbf{Q}^\top \mathbf{z} + \mathbf{b}) \mathbf{R}_B \mathbf{R}_A \right) \right)$$

 ${f Q}$ columns are orthonormal vectors How to keep an orthogonal matrix? 68 ${f R}_A, {f R}_B$ triangular matrices

SYLVESTER FLOWS: LEARNING ORTHOGONAL MATRIX

- 1.(O-SNF) Iterative orthogonalization procedure (e.g., Kovarik, 1970):
- a. We can **backpropagate** through this procedure.
- b. We can **control the bottleneck** by changing the number of columns.
- 2.(**H-SNF**) Use Householder transformations to represent **Q**.
- a. H-SNF is a non-linear **extension** of the Householder flow.
- **b.** No bottleneck!

3.(**T-SNF**) Alternate between identity matrix and a fixed permutation matrix.

a. Used also in RealNVP and IAF. 69

SYLVESTER NORMALIZING FLOWS

A single step: $\mathbf{z}_k = \mathbf{z}_{k-1} + \mathbf{Q}\mathbf{R}_A \ h(\mathbf{R}_B\mathbf{Q}^\top\mathbf{z}_{k-1} + \mathbf{b})$

Keep Q orthogonal: (i) bottleneck: O-SNF, (ii) w/o: H-SNF, T-SNF.

Use hypernets to calculate **Q** and **R**'s:

SYLVESTER FLOWS: RESULTS ON MNIST

Model	-ELBO	NLL
VAE	86.55 ± 0.06	82.14 ± 0.07
Planar	86.06 ± 0.31	81.91 ± 0.22
IAF	84.20 ± 0.17	80.79 ± 0.12
Ō-SNF	$\overline{83.32\pm0.06}$	$ar{80.22}\pmar{0.03}$
H-SNF	83.40 ± 0.01	80.29 ± 0.02
T-SNF	83.40 ± 0.10	80.28 ± 0.06

SYLVESTER FLOWS: RESULTS ON OTHER DATA

Model	Freyfaces		Omniglot		Caltech 101	
	-ELBO	NLL	-ELBO	NLL	-ELBO	NLL
VAE	4.53 ± 0.02	4.40 ± 0.03	104.28 ± 0.39	97.25 ± 0.23	110.80 ± 0.46	99.62 ± 0.74
Planar	4.40 ± 0.06	4.31 ± 0.06	102.65 ± 0.42	96.04 ± 0.28	109.66 ± 0.42	98.53 ± 0.68
IAF	4.47 ± 0.05	4.38 ± 0.04	102.41 ± 0.04	96.08 ± 0.16	111.58 ± 0.38	99.92 ± 0.30
O-SNF	4.51 ± 0.04	4.39 ± 0.05	-99.00 ± 0.29	93.82 ± 0.21	$10\overline{6}.\overline{08} \pm \overline{0}.\overline{39}$	94.61 ± 0.83
H-SNF	4.46 ± 0.05	4.35 ± 0.05	99.00 ± 0.04	93.77 ± 0.03	104.62 ± 0.29	93.82 ± 0.62
T-SNF	4.45 ± 0.04	4.35 ± 0.04	99.33 ± 0.23	93.97 ± 0.13	105.29 ± 0.64	94.92 ± 0.73

No. of flows: 16 IAF: 1280 wide MADE, **no hypernets** Bottleneck in O-SNF: 32 No. of Householder transformations in H-SNF: 8

COMPONENTS OF VAES

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Normalizing flows
Discrete encoders

Hyperspherical dist.

Hyperbolic-normal dist. Group theory Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

 $\text{ELBO}(\mathbf{x}; \theta, \phi, \lambda)$ ----

Adversarial learning MMD Wasserstein AE

Question: Is it possible to recover the true Riemannian structure of the latent space?

In other words:

Will geodesics follow data manifold?

Question: Is it possible to recover the true Riemannian structure of the latent space?

In other words:

Will geodesics follow data manifold?

For Gaussian VAE: No.

Question: Is it possible to recover the true Riemannian structure of the latent space?

In other words:

Will geodesics follow data manifold?

For Gaussian VAE: No.

We need a better notion of uncertainty

Question: Is it possible to recover the true Riemannian structure of the latent space?

In other words:

77

Will geodesics follow data manifold?

For Gaussian VAE: No.

We need a better notion of **uncertainty** or **different models**.

POTENTIAL PROBLEMS WITH GAUSSIANS

A common assumption in VAEs: distributions are Gaussians.

POTENTIAL PROBLEMS WITH GAUSSIANS

A common assumption in VAEs: distributions are Gaussians. But: The Gaussian distr. is concentrated around the origin \rightarrow possible **bias**.

POTENTIAL PROBLEMS WITH GAUSSIANS

- A common assumption in VAEs: distributions are Gaussians. But:
 - The Gaussian distr. is concentrated around the origin \longrightarrow possible **bias**.
 - In high-dim, Gaussians concentrate on a hypersphere $\longrightarrow \ell_2$ norm fails.

A HYPERSPHERICAL LATENT SPACE

Since in high-dim the Gaussian distribution concentrates on a hypersphere, we propose to use von-Mises-Fisher distribution defined on the hypersphere $S^{m-1} \subset \mathbb{R}^m$

$$q(\mathbf{z}|\mu,\kappa) = \mathcal{C}_m(\kappa) \exp(\kappa \mu^\top \mathbf{z})$$
$$\mathcal{C}_m(\kappa) = \frac{\kappa^{m/2-1}}{(2\pi)^{m/2} \mathcal{I}_{m/2-1}(\kappa)}$$

$$0.18$$

 0.16
 0.14
 0.12
 0.1
 0.12
 0.1
 0.12
 0.1
 0.08
 0.06
 0.04

where $\|\mu\|^2 = 1$, \mathcal{I}_v is the modified Bessel function of the first kind of order *v*.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical Variational Auto-Encoders. UAI 2018

HYPERSPHERICAL VAES

The variational dist. is the **von-Mises-Fisher**, and the marginal is **uniform**, *i.e.*, von-Mises-Fisher with $\kappa = 0$. Then the **KL term** is as follows:

$$\mathrm{KL}(\mathrm{vMF}(\mu,\kappa)||\mathrm{U}(\mathcal{S}^{m-1})) = \kappa \frac{\mathcal{I}_{m/2}}{\mathcal{I}_{m/2-1}(\kappa)} + \log \mathcal{C}_m(\kappa) - \log \left(\frac{2\pi^{m/2}}{\Gamma(m/2)}\right)^{-1}$$

HYPERSPHERICAL VAES

The variational dist. is the **von-Mises-Fisher**, and the marginal is **uniform**, *i.e.*, von-Mises-Fisher with $\kappa = 0$. Then the **KL term** is as follows:

$$\mathrm{KL}(\mathrm{vMF}(\mu,\kappa)||\mathrm{U}(\mathcal{S}^{m-1})) = \kappa \frac{\mathcal{I}_{m/2}}{\mathcal{I}_{m/2-1}(\kappa)} + \log \mathcal{C}_m(\kappa) - \log \left(\frac{2\pi^{m/2}}{\Gamma(m/2)}\right)^{-1}$$

There exist an efficient **sampling procedure** using Householder transformation (Ulrich, 1984).

HYPERSPHERICAL VAES

The variational dist. is the **von-Mises-Fisher**, and the marginal is **uniform**, *i.e.*, von-Mises-Fisher with $\kappa = 0$. Then the **KL term** is as follows:

$$\mathrm{KL}(\mathrm{vMF}(\mu,\kappa)||\mathrm{U}(\mathcal{S}^{m-1})) = \kappa \frac{\mathcal{I}_{m/2}}{\mathcal{I}_{m/2-1}(\kappa)} + \log \mathcal{C}_m(\kappa) - \log \left(\frac{2\pi^{m/2}}{\Gamma(m/2)}\right)^{-1}$$

There exist an efficient **sampling procedure** using Householder transformation (Ulrich, 1984).

The reparameterization trick could be achieved by using the **rejection sampling** (Naesseth et al., 2017).

HYPERSPHERICAL VAE: RESULTS ON MNIST

(a) \mathbb{R}^2 latent space of the \mathcal{N} -VAE.

(b) Hammer projection of S^2 latent space of the S-VAE.

Mathad	\mathcal{N} -VAE			S-VAE				
Method	LL	$\mathcal{L}[q]$	RE	KL	LL	$\mathcal{L}[q]$	RE	KL
d = 2	$-135.73 \pm .83$	$-137.08{\scriptstyle \pm.83}$	$-129.84 \pm .91$	$7.24 \pm .11$	-132.50±.73	$-133.72 \pm .85$	$-126.43 \pm .91$	$7.28 \pm .14$
d = 5	$-110.21 \pm .21$	$-112.98 \pm .21$	$\textbf{-100.16} \scriptstyle \pm .22$	$12.82{\scriptstyle \pm.11}$	$-108.43 \pm .09$	$\textbf{-}111.19{\scriptstyle \pm.08}$	$\textbf{-97.84} \scriptstyle \pm .13$	$13.35{\scriptstyle \pm.06}$
d = 10	$-93.84 \pm .30$	$-98.36 \pm .30$	$-78.93 \pm .30$	$19.44 {\scriptstyle \pm.14}$	-93.16 ±.31	$-97.70 \pm .32$	$\textbf{-77.03} \scriptstyle \pm .39$	$20.67 {\scriptstyle \pm .08}$
d = 20	$-88.90 \pm .26$	$-94.79 \pm .19$	$-71.29 \pm .45$	$23.50{\scriptstyle \pm.31}$	$-89.02 \pm .31$	$\textbf{-96.15} \scriptstyle \pm .32$	$\textbf{-67.65}{\scriptstyle \pm.43}$	$28.50{\scriptstyle \pm.22}$
d = 40	-88.93 \pm .30	$\textbf{-94.91} \scriptstyle \pm .18$	$-71.14 \pm .56$	$23.77 \scriptstyle \pm .49$	$-90.87 \pm .34$	$\textbf{-101.26} {\scriptstyle \pm.33}$	$-67.75 \pm .70$	$33.50{\scriptstyle \pm.45}$

HYPERSPHERICAL VAE: RESULTS ON MNIST

(a) \mathbb{R}^2 latent space of the \mathcal{N} -VAE.

(b) Hammer projection of S^2 latent space of the S-VAE.

Mathad	\mathcal{N} -VAE			S-VAE				
Method	LL	$\mathcal{L}[q]$	RE	KL	LL	$\mathcal{L}[q]$	RE	KL
d = 2	$-135.73 \pm .83$	$-137.08 \pm .83$	$-129.84 \pm .91$	$7.24 \pm .11$	-132.50±.73	$-133.72 \pm .85$	$-126.43 \pm .91$	$7.28 \pm .14$
d = 5	$-110.21 \pm .21$	$-112.98 \pm .21$	$\textbf{-100.16} \scriptstyle \pm .22$	$12.82{\scriptstyle \pm.11}$	$-108.43 \pm .09$	$\textbf{-}111.19{\scriptstyle \pm.08}$	$-97.84 \pm .13$	$13.35{\scriptstyle \pm .06}$
d = 10	$-93.84 \pm .30$	$-98.36 \pm .30$	$\textbf{-78.93} \scriptstyle \pm .30$	$19.44 {\scriptstyle \pm.14}$	-93.16 ±.31	$\textbf{-97.70} {\scriptstyle \pm.32}$	$-77.03 \pm .39$	$20.67 \scriptstyle \pm .08$
d = 20	$-88.90 \pm .26$	$-94.79 \pm .19$	$-71.29 \pm .45$	$23.50{\scriptstyle \pm.31}$	$-89.02 \pm .31$	$\textbf{-96.15} \scriptstyle \pm .32$	$-67.65 \pm .43$	$28.50 {\scriptstyle \pm.22}$
d = 40	-88.93 ±.30	$-94.91 \pm .18$	$71.14 \pm .56$	$23.77 \scriptstyle \pm .49$	$-90.87 \pm .34$	$-101.26 \pm .33$	$-67.75 \pm .70$	$33.50{\scriptstyle \pm.45}$

86

HYPERSPHERICAL VAE: RESULTS ON SEMI-SUPERVISED MNIST

Met	thod	100			
$dim_{\mathbf{z}_1}$	$dim_{\mathbf{z}_2}$	$\mathcal{N}+\mathcal{N}$	S+S	\mathcal{S} + \mathcal{N}	
	5	90.0±.4	$\textbf{94.0}{\scriptstyle \pm.1}$	$93.8{\scriptstyle \pm.1}$	
5	10	$90.7 \pm .3$	$94.1{\scriptstyle \pm.1}$	$94.8{\scriptstyle \pm.2}$	
	50	$90.7{\scriptstyle \pm.1}$	$92.7{\scriptstyle \pm .2}$	$93.0{\scriptstyle \pm.1}$	
	5	90.7±.3	$91.7 {\scriptstyle \pm .5}$	$94.0{\scriptstyle \pm.4}$	
10	10	92.2 ± 100	$96.0{\scriptstyle \pm .2}$	$95.9{\scriptstyle \pm.3}$	
	50	$92.9 \pm .4$	$95.1{\scriptstyle \pm .2}$	$95.7{\scriptstyle \pm.1}$	
	5	92.0±.2	$91.7 {\scriptstyle \pm.4}$	$95.8{\scriptstyle \pm.1}$	
50	10	$93.0_{\pm.1}$	$95.8{\scriptstyle \pm.1}$	$97.1{\scriptstyle \pm.1}$	
	50	93.2 ± 2.2	$94.2{\scriptstyle \pm.1}$	97.4 \pm .1	

VU

HYPERSPHERICAL GRAPHVAE: LINK PREDICTION

(a) \mathbb{R}^2 latent space of the \mathcal{N} -VGAE.

(b) Hammer projection of S^2 latent space of the S-VGAE.

Method		<i>N</i> -VGAE	S-VGAE
Cora	AUC AP	92.7 \pm .2 93.2 \pm .4	$94.1{\scriptstyle \pm .1} \\ 94.1{\scriptstyle \pm .3}$
Citeseer	AUC AP	90.3 \pm .5 91.5 \pm .5	$94.7{\scriptstyle \pm .2} \\ 95.2{\scriptstyle \pm .2}$
Pubmed	AUC AP	97.1±.0 97.1±.0	$\begin{array}{c} 96.0 \scriptstyle \pm .1 \\ 96.0 \scriptstyle \pm .1 \end{array}$

COMPONENTS OF VAES

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Normalizing flows Discrete encoders Hyperspherical dist. Hyperbolic-normal dist. Group theory

Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

 $\text{ELBO}(\mathbf{x}; \theta, \phi, \lambda)$ ----

Adversarial learning MMD Wasserstein AE

PROBLEMS OF HOLES IN VAES

There is a discrepancy between posteriors and the Gaussian prior that results in regions that were never "seen" by the

posterior (holes). → multi-modal prior

unrealistic samples.

VU

Rezende, D.J. and Viola, F., 2018. Taming VAEs. arXiv preprint arXiv:1810.00597.

Let's rewrite ELBO over the training data:

 $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[\log p_{\vartheta}(\mathbf{x}) \right] \geq \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathbb{I}_{\mathcal{D}}(\mathbf{x};\mathbf{z}) - \mathrm{KL} \left(q_{\phi,\mathcal{D}}(\mathbf{z}) \| p_{\lambda}(\mathbf{z}) \right)$

Let's rewrite ELBO over the training data: $q_{\phi,\mathcal{D}}(\mathbf{z}) = \frac{1}{N} \sum_{n} q_{\phi}(\mathbf{z}|\mathbf{x}_{n})$ $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[\log p_{\vartheta}(\mathbf{x})\right] \ge \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - \mathbb{I}_{\mathcal{D}}(\mathbf{x};\mathbf{z}) - \mathrm{KL} \left(q_{\phi,\mathcal{D}}(\mathbf{z}) \| p_{\lambda}(\mathbf{z})\right)$

Let's rewrite ELBO over the training data:

Let's rewrite ELBO over the training data:

$$q_{\phi,\mathcal{D}}(\mathbf{z}) = \frac{1}{N} \sum_{n} q_{\phi}(\mathbf{z}|\mathbf{x}_{n})$$

$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[\log p_{\vartheta}(\mathbf{x})\right] \ge \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - \mathbb{I}_{\mathcal{D}}(\mathbf{x};\mathbf{z}) - \mathrm{KL}\left(q_{\phi,\mathcal{D}}(\mathbf{z}) \| p_{\lambda}(\mathbf{z})\right)$$

KL = 0 iff $q_{\phi,\mathcal{D}}(\mathbf{z}) = p_{\lambda}(\mathbf{z})$, then the optimal prior = aggregated posterior.

Let's rewrite ELBO over the training data: $q_{\phi,\mathcal{D}}(\mathbf{z}) = \frac{1}{N} \sum_{n} q_{\phi}(\mathbf{z}|\mathbf{x}_{n})$ $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[\log p_{\vartheta}(\mathbf{x})\right] \ge \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - \mathbb{I}_{\mathcal{D}}(\mathbf{x};\mathbf{z}) - \mathrm{KL}\left(q_{\phi,\mathcal{D}}(\mathbf{z})|p_{\lambda}(\mathbf{z})\right)$

KL = 0 iff $q_{\phi,\mathcal{D}}(\mathbf{z}) = p_{\lambda}(\mathbf{z})$, then the optimal prior = aggregated posterior.

Summing over all training data is infeasible and since the sample is finite, it could cause some additional instabilities.

Let's rewrite ELBO over the training data: $q_{\phi,\mathcal{D}}(\mathbf{z}) = \frac{1}{N} \sum_{n} q_{\phi}(\mathbf{z}|\mathbf{x}_{n})$ $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[\log p_{\vartheta}(\mathbf{x})\right] \ge \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - \mathbb{I}_{\mathcal{D}}(\mathbf{x};\mathbf{z}) - \mathrm{KL}\left(q_{\phi,\mathcal{D}}(\mathbf{z})|p_{\lambda}(\mathbf{z})\right)$

KL = 0 iff $q_{\phi,\mathcal{D}}(\mathbf{z}) = p_{\lambda}(\mathbf{z})$, then the optimal prior = aggregated posterior.

Summing over all training data is infeasible and since the sample is finite, it could cause some additional instabilities. Instead we propose to use:

$$p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z} | \mathbf{u}_k)$$

Let's rewrite ELBO over the training data: $q_{\phi,\mathcal{D}}(\mathbf{z}) = \frac{1}{N} \sum_{n} q_{\phi}(\mathbf{z}|\mathbf{x}_{n})$ $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[\log p_{\vartheta}(\mathbf{x})\right] \ge \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - \mathbb{I}_{\mathcal{D}}(\mathbf{x};\mathbf{z}) - \mathrm{KL}\left(q_{\phi,\mathcal{D}}(\mathbf{z})|p_{\lambda}(\mathbf{z})\right)$

KL = 0 iff $q_{\phi,\mathcal{D}}(\mathbf{z}) = p_{\lambda}(\mathbf{z})$, then the optimal prior = aggregated posterior.

Summing over all training data is infeasible and since the sample is finite, it could cause some additional instabilities. Instead we propose to use:

$$p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z} | \mathbf{u}_k)$$

96

Let's rewrite ELBO over the training data: $q_{\phi,\mathcal{D}}(\mathbf{z}) = \frac{1}{N} \sum_{n} q_{\phi}(\mathbf{z}|\mathbf{x}_{n})$ $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[\log p_{\vartheta}(\mathbf{x})\right] \ge \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - \mathbb{I}_{\mathcal{D}}(\mathbf{x};\mathbf{z}) - \mathrm{KL}\left(q_{\phi,\mathcal{D}}(\mathbf{z})|p_{\lambda}(\mathbf{z})\right)$

KL = 0 iff $q_{\phi,\mathcal{D}}(\mathbf{z}) = p_{\lambda}(\mathbf{z})$, then the optimal prior = aggregated posterior.

Summing over all training data is infeasible and since the sample is finite, it could cause some additional instabilities. Instead we propose to use:

$$p_{\lambda}(\mathbf{z}) = \frac{1}{K} \sum_{k=1}^{K} q_{\phi}(\mathbf{z} \mathbf{u}_{k})$$
 pseudoinputs are trained from scratch by SGD VU

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018

VAMPPRIOR: EXPERIMENTS (PSEUDOINPUTS)

98

MNIST

Omniglot

Caltech 101 Silhouettes

Frey Faces

VAMPPRIOR: EXPERIMENTS (SAMPLES)

≫%]0 Ü×	DAUDE	四三日日	上个了日日	4 まままお
ε¥ΣΦΒ	-4 B B B B	15633	可加乎叫山	A FRXD
	원 한 프 세 표	日十月元日	刘县中书	星なべて見
1 (C 27 ¹¹	 भ मा भ मा 	日子门口	t(四 ∷ ≈ 登	20
X 🐧 n Z 🚧	10 × 5 3 3	P (9) P 0 F	DERHOF	山とろもの
84 24 84 84 84 84 84 84 84 84 84 84 84 84 84	Roll Roll Roll Roll Roll Roll Roll Roll	2-0 2-0 <td><u>동네 동네 동네 동네 동네</u> <u>동네 동네 동네 동네</u> <u>동네 동네 동네 동네</u> <u>동네 동네 동네 동네</u></td> <td>2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0</td>	<u>동네 동네 동네 동네 동네</u> <u>동네 동네 동네 동네</u> <u>동네 동네 동네 동네</u> <u>동네 동네 동네 동네</u>	2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0
(a) real data	(b) VAE	(c) HVAE + VampPrior	(d) convHVAE + VampPrior	(e) PixelHVAE + VampPrior
99				

VAMPPRIOR: EXPERIMENTS (RECONSTRUCTIONS)

Flow-based models

THE CHANGE OF VARIABLES FORMULA

Let's recall the change of variables formula with invertible transformations: $K_{\perp} = \frac{\partial f_{\perp}(\mathbf{r}_{\perp}, \cdot)}{\partial f_{\perp}(\mathbf{r}_{\perp}, \cdot)}$

$$p(\mathbf{x}) = \pi_0(\mathbf{z}_0) \prod_{i=1}^{R} \left| \det \frac{\partial f_i(\mathbf{z}_{i-1})}{\partial \mathbf{z}_{i-1}} \right|^{-1}$$

We can think of it as an invertible neural network:

102

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.

THE CHANGE OF VARIABLES FORMULA

Let's recall the change of variables formula with invertible transformations: $K_{\perp} = 2f_{\star}(q_{\perp})^{-1}$

$$p(\mathbf{x}) = \pi_0(\mathbf{z}_0) \prod_{i=1}^{K} \left| \det \frac{\partial f_i(\mathbf{z}_{i-1})}{\partial \mathbf{z}_{i-1}} \right|^{-1}$$

We can think of it as an invertible neural network:

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.

REALNVP

104

Design the invertible transformations as follows:

$$\mathbf{y}_{1:d} = \mathbf{x}_{1:d}$$
$$\mathbf{y}_{d+1:D} = \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right)$$

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

REALNVP

Design the invertible transformations as follows:

$$\mathbf{y}_{1:d} = \mathbf{x}_{1:d}$$
$$\mathbf{y}_{d+1:D} = \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right)$$

Invertible by design:

$$\begin{aligned} \mathbf{y}_{1:d} &= \mathbf{x}_{1:d} \\ \mathbf{y}_{d+1:D} &= \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right) \\ &\Leftrightarrow \begin{cases} \mathbf{x}_{1:d} &= \mathbf{y}_{1:d} \\ \mathbf{x}_{d+1:D} &= \left(\mathbf{y}_{d+1:D} - t\left(\mathbf{y}_{1:d}\right)\right) \odot \exp\left(-s\left(\mathbf{y}_{1:d}\right)\right) \end{cases} \end{aligned}$$

105

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

REALNVP

Design the invertible transformations as follows:

$$\mathbf{y}_{1:d} = \mathbf{x}_{1:d}$$
$$\mathbf{y}_{d+1:D} = \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right)$$

Invertible by design:

$$\begin{aligned} \mathbf{y}_{1:d} &= \mathbf{x}_{1:d} \\ \mathbf{y}_{d+1:D} &= \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right) \\ &\Leftrightarrow \begin{cases} \mathbf{x}_{1:d} &= \mathbf{y}_{1:d} \\ \mathbf{x}_{d+1:D} &= \left(\mathbf{y}_{d+1:D} - t\left(\mathbf{y}_{1:d}\right)\right) \odot \exp\left(-s\left(\mathbf{y}_{1:d}\right)\right) \end{cases} \end{aligned}$$

Easy Jacobian:

106

$$\mathbf{J} = \begin{bmatrix} \mathbb{I}_d & \mathbf{0}_{d \times (D-d)} \\ \frac{\partial \mathbf{y}_{d+1:D}}{\partial \mathbf{x}_{1:d}} & \operatorname{diag}\left(\exp\left(s\left(\mathbf{x}_{1:d}\right)\right)\right) \end{bmatrix} \qquad \det(\mathbf{J}) = \prod_{j=1}^{D-d} \exp\left(s\left(\mathbf{x}_{1:d}\right)\right)_j = \exp\left(\sum_{j=1}^{D-d} s\left(\mathbf{x}_{1:d}\right)_j\right)$$

1

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

RESULTS

107

GLOW: REALNVP WITH 1X1 CONVOLUTIONS

A model contains ~1000 convolutions.

A new component: 1x1 convolution instead of a permutation

matrix.

(a) One step of our flow.

(b) Multi-scale architecture (Dinh et al., 2016).

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NeurIPS 2018

GLOW: SAMPLES

GLOW: LATENT INTERPOLATION

INTEGER DISCRETE FLOW: NO NEED TO CALCULATE JACOBIAN!

VU

112

Hoogeboom, E., Peters, J. W., Berg, R. V. D., & Welling, M. (2019). Integer Discrete Flows and Lossless Compression. NeurIPS 2019

Future directions

BLURRINESS AND SAMPLING IN VAES

How to avoid sampling from holes?

Should we follow geodesics in the latent space?

How to use **geometry** of the latent space to build better **decoders**?

How to build temporal decoders?

114

COMPRESSION AND VAES

Taking a **deterministic & discrete encoder** allows to simplify the objective.

It is important to learn a **powerful prior**. This is challenging!

Is it **easier** to learn a prior with **temporal dependencies**?

Can we alleviate some dependencies by

using hypernets?

Habibian, A., van Rozendaal, T., Tomczak, J.M., & Cohen, T.S. (2019), Video Compression with Rate-Distortion Autoencoders, ICCV 2019

RE(x|z) - H[q(z|x)] - CE[q(z)||p(z)]= RE(x|z) - CE[q(z)||p(z)]

ACTIVE LEARNING/RL AND VAES

Using latent representation to navigate and/or quantify uncertainty.

Formulating **policies** in the latent space entirely.

Do we need a better notion of **sequential dependencies**?

HYBRID AND FLOW-BASED MODELS

We need a **better understanding** of the latent space.

Joining an **invertible model** (flow-based model) with a **predictive model**.

Isn't this model an overkill?

How would it work in the **multi-modal learning** scenario?

117

Nalisnick, E., et al. (2019). Hybrid models with deep and invertible features. arXiv preprint arXiv:1902.02767.

HYBRID MODELS AND OOD SAMPLE

Going back to first slides, we need a good notion of **p(x)**.

Distinguishing **out-of-distribution (OOD)** samples is very important.

Crucial for decision making, outlier detection, policy learning...

Nalisnick, Eric, et al. "Hybrid models with deep and invertible features." arXiv preprint arXiv:1902.02767 (2019).

Thank you!

Webpage: https://jmtomczak.github.io/

Code on github: https://github.com/jmtomczak/

Contact: jmk.tomczak@gmail.com