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Introduction



We learn a neural network to classify images:
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We learn a neural network to classify images:
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IS GENERATIVE MODELING IMPORTANT?

p(panda|x)=0.99

...

noise p(panda|x)=0.01

…


p(dog|x)=0.9

=+



We learn a neural network to classify images:

There is no semantic understanding of images.
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IS GENERATIVE MODELING IMPORTANT?

p(panda|x)=0.99

...

noise p(panda|x)=0.01

…


p(dog|x)=0.9

=+



This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.
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This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.

A possible solution is generative modeling.
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IS GENERATIVE MODELING IMPORTANT?

new data
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WHERE DO WE USE DEEP GENERATIVE MODELING?

Image analysis

Reinforcement Learning

Audio analysis

Text analysis

Graph 
analysis

and more...
Active Learning

Medical data
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HOW TO FORMULATE GENERATIVE MODELS?

Generative 
model

Autoregressive 
(e.g., PixelCNN)

Implicit models 
(e.g., GANs)

Prescribed models 
(e.g., VAE)

Latent variable 
models

Flow-based  
(e.g., RealNVP, GLOW)
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HOW TO FORMULATE GENERATIVE MODELS?

Training Likelihood Sampling Compression

Autoregressive models 
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes
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GENERATIVE MODELS AS (SPHERICAL) COWS

flow-based models
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GENERATIVE MODELS AS (SPHERICAL) COWS

flow-based models latent variable models
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Deep latent variable models



Modeling in high-dimensional spaces is difficult.

26

GENERATIVE MODELING



Modeling in high-dimensional spaces is difficult.

27

GENERATIVE MODELING



Modeling in high-dimensional spaces is difficult.
Modeling all dependencies among pixels:
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Modeling in high-dimensional spaces is difficult.
Modeling all dependencies among pixels:

A possible solution: Latent Variable Models!
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GENERATIVE MODELING

problematic



Generative process: 

Log of marginal distribution: 

How to train such model efficiently? 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GENERATIVE MODELING WITH LATENT VARIABLES
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VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

Variational posterior
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VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

Jensen’s inequality
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VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

Reconstruction error Regularization
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VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

decoder

encoder

marginal
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VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

= Variational Auto-Encoder

decoder

encoder

marginal



Variational posterior (encoder) 
and likelihood function 
(decoder) are parameterized 
by neural networks.

Reparameterization trick: 
move the stochasticity to 
independent random variables

42

µ

σ

encoder net decoder netcode

VARIATIONAL AUTO-ENCODERS

z = f(µ,�; "), where " ⇠ p(")
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VAE copies input to output through a bottleneck.
VAE learns a code of the data.
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VAE copies input to output through a bottleneck.
VAE learns a code of the data.
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µ

σ

encoder net decoder netcode

VARIATIONAL AUTO-ENCODERS

0µ
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VAE has a marginal on the latent code.
VAE can generate new data.
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0

p(z)

decoder netcode

VARIATIONAL AUTO-ENCODERS



VAE has a marginal on the latent code.
VAE can generate new data.
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VAE has a marginal on the latent code.
VAE can generate new data.
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0

decoder netcode

VARIATIONAL AUTO-ENCODERS

p(z)
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COMMON ISSUES WITH VAES

Weak decoders  bad generations/reconstructions


Weak encoders  bad latent representation


Weak marginals  bad generations


Variational posteriors  what family of distributions?


Others…

→

→

→

→
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COMPONENTS OF VAES

Resnets

DRAW

Autoregressive models

Normalizing flows


Autoregressive models

Normalizing flows

VampPrior 
Implicit prior
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Question: How to minimize the KL(q||p)? 

In other words: How to formulate a more 
flexible family of approximate (variational) 
posteriors?  

Using Gaussian is not sufficiently flexible. 

We need a computationally efficient 
tool.
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VARIATIONAL POSTERIOR IN VAES

Arvanitidis, G., Hansen, L. K., & Hauberg, S. (2017). Latent space oddity: on the curvature of deep generative models. arXiv preprint arXiv:1710.11379.



Sample from a “simple” distribution:
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VARIATIONAL INFERENCE WITH NORMALIZING FLOWS

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015



Sample from a “simple” distribution:

Apply a sequence of K invertible transformations: 
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VARIATIONAL INFERENCE WITH NORMALIZING FLOWS

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

0 0 0

...



Sample from a “simple” distribution:

Apply a sequence of K invertible transformations: 

and the change of variables yields: 

56

VARIATIONAL INFERENCE WITH NORMALIZING FLOWS

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

0 0 0

...



The learning objective (ELBO) with normalizing flows becomes: 

The difficulty lies in calculating the Jacobian determinant: 

Volume-preserving flows:


General normalizing flows:                         is “easy” to compute.


                                is “easy” to compute
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The learning objective (ELBO) with normalizing flows becomes: 

The difficulty lies in calculating the Jacobian determinant: 

Volume-preserving flows:


General normalizing flows:                         is “easy” to compute.


                                is “easy” to compute
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VARIATIONAL INFERENCE WITH NORMALIZING FLOWS

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015




First, let us take a look at planar flows (Rezende & Mohamed, 2015): 

 

This is equivalent to a residual layer with a single neuron. 

Can we calculate the Jacobian determinant efficiently?
60
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PLANAR FLOWS

= + +h



We can use the matrix determinant lemma to get the Jacobian determinant: 

which is linear wrt the number of z’s. 

The bottleneck requires many steps, so how can we improve on that? 

1.Can we generalize planar flows? 

2.If yes, how can we compute the Jacobian determinant efficiently?
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PLANAR FLOWS



We can use the matrix determinant lemma to get the Jacobian determinant: 

which is linear wrt the number of z’s. 

The bottleneck requires many steps, so how can we improve on that? 

1.Can we generalize planar flows? 

2.If yes, how can we compute the Jacobian determinant efficiently?
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PLANAR FLOWS



We can control the bottleneck by generalizing u and w to A and B. 

How to calculate det of Jacobian? Use Sylvester Determinant Identity: 

 
OK, but it’s very expensive! Can we simplify these calculations?
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GENERALIZING PLANAR FLOWS: SYLVESTER FLOWS

= + +h



We can control the bottleneck by generalizing u and w to A and B. 

How to calculate det of Jacobian? Use Sylvester Determinant Identity: 

 
OK, but it’s very expensive! Can we simplify these calculations?
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GENERALIZING PLANAR FLOWS: SYLVESTER FLOWS

= + +h

v.d. Berg, R., Hasenclever, L., Tomczak, J.M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. UAI 2018




We can control the bottleneck by generalizing u and w to A and B. 

How to calculate det of Jacobian? Use Sylvester Determinant Identity: 

 
OK, but it’s very expensive! Can we simplify these calculations?
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GENERALIZING PLANAR FLOWS: SYLVESTER FLOWS

= + +h

v.d. Berg, R., Hasenclever, L., Tomczak, J.M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. UAI 2018




Use of Sylvester Determinant Identity yields:

Next, we can use QR decomposition to represent A and B:
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Use of Sylvester Determinant Identity yields:

Next, we can use QR decomposition to represent A and B:
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SYLVESTER FLOWS

columns are orthonormal vectors
triangular matrices

How to keep an orthogonal matrix?



1.(O-SNF) Iterative orthogonalization procedure (e.g., Kovarik, 1970): 

a. We can backpropagate through this procedure. 

b. We can control the bottleneck by changing the number of columns.  

2.(H-SNF) Use Householder transformations to represent Q. 

a. H-SNF is a non-linear extension of the Householder flow. 

b. No bottleneck! 

3.(T-SNF) Alternate between identity matrix and a fixed permutation matrix. 

a. Used also in RealNVP and IAF.
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SYLVESTER FLOWS: LEARNING ORTHOGONAL MATRIX

Q = I� 2
vv>

v>v
<latexit sha1_base64="sYQHpE1v0dlZ8/eil9JaWuRt0R0="></latexit>



A single step:
Keep Q orthogonal: (i) bottleneck: O-SNF, (ii) w/o: H-SNF, T-SNF. 

Use hypernets to calculate Q and R’s:

70

SYLVESTER NORMALIZING FLOWS

= + +h

g
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SYLVESTER FLOWS: RESULTS ON MNIST
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SYLVESTER FLOWS: RESULTS ON OTHER DATA

No. of flows: 16 
IAF: 1280 wide MADE, no hypernets 
Bottleneck in O-SNF: 32 
No. of Householder transformations in H-SNF: 8
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COMPONENTS OF VAES

Normalizing flows 
Discrete encoders 
Hyperspherical dist. 
Hyperbolic-normal dist.

Group theory

Resnets

DRAW

Autoregressive models

Normalizing flows


Autoregressive models

Normalizing flows

VampPrior 
Implicit prior

Adversarial learning

MMD

Wasserstein AE



Question: Is it possible to recover the true 
Riemannian structure of the latent space? 

In other words:  

Will geodesics follow data manifold? 

For Gaussian VAE: No. 

We need a better notion of uncertainty or 

different models.
74

GEOMETRIC PERSPECTIVE ON VAES

Arvanitidis, G., Hansen, L. K., & Hauberg, S. (2017). Latent space oddity: on the curvature of deep generative models. arXiv preprint arXiv:1710.11379.
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A common assumption in VAEs: distributions are Gaussians. 
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A common assumption in VAEs: distributions are Gaussians. But:

The Gaussian distr. is concentrated around the origin ⟶ possible bias. 

In high-dim, Gaussians concentrate on a hypersphere ⟶ ℓ2 norm fails.
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POTENTIAL PROBLEMS WITH GAUSSIANS



Since in high-dim the Gaussian distribution concentrates 
on a hypersphere, we propose to use von-Mises-Fisher 
distribution defined on the hypersphere                


 
where	 	 	 	 is the modified Bessel function of 
the first kind of order v.

81

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical Variational Auto-Encoders. UAI 2018

A HYPERSPHERICAL LATENT SPACE



The variational dist. is the von-Mises-Fisher, and the marginal is uniform, 
i.e., von-Mises-Fisher with   . Then the KL term is as follows:  

There exist an efficient sampling procedure using Householder 
transformation (Ulrich, 1984). 
 
The reparameterization trick could be achieved by using the rejection 
sampling (Naesseth et al., 2017).
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HYPERSPHERICAL VAES
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HYPERSPHERICAL VAE: RESULTS ON MNIST
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HYPERSPHERICAL VAE: RESULTS ON MNIST
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HYPERSPHERICAL VAE: RESULTS ON SEMI-SUPERVISED MNIST
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HYPERSPHERICAL GRAPHVAE: LINK PREDICTION
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COMPONENTS OF VAES

Normalizing flows 
Discrete encoders 
Hyperspherical dist. 
Hyperbolic-normal dist.

Group theory

Resnets

DRAW

Autoregressive models

Normalizing flows


Autoregressive models

Normalizing flows

VampPrior 
Implicit prior

Adversarial learning

MMD

Wasserstein AE



There is a discrepancy between posteriors 

and the Gaussian prior that results in 

regions that were never “seen” by the 

posterior (holes). ⇾ multi-modal prior 

Sampling process could produce 

unrealistic samples.
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PROBLEMS OF HOLES IN VAES

Rezende, D.J. and Viola, F., 2018. Taming VAEs. arXiv preprint arXiv:1810.00597.

Multi-modal priorStandard



Let’s rewrite ELBO over the training data: 

KL = 0 iff      , then the optimal prior = aggregated posterior. 

Summing over all training data is infeasible and since the sample is finite, it 
could cause some additional instabilities. 
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LOOKING FOR THE OPTIMAL PRIOR

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018
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LOOKING FOR THE OPTIMAL PRIOR

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018 Multi-modal 



Let’s rewrite ELBO over the training data: 

KL = 0 iff      , then the optimal prior = aggregated posterior. 

Summing over all training data is infeasible and since the sample is finite, it 
could cause some additional instabilities. Instead we propose to use: 
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LOOKING FOR THE OPTIMAL PRIOR

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018

pseudoinputs are trained 
from scratch by SGD
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VAMPPRIOR: EXPERIMENTS (PSEUDOINPUTS)
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VAMPPRIOR: EXPERIMENTS (SAMPLES)
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VAMPPRIOR: EXPERIMENTS (RECONSTRUCTIONS)
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Flow-based models



Let’s recall the change of variables formula with invertible 
transformations:

We can think of it as an invertible neural network:
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THE CHANGE OF VARIABLES FORMULA

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.

0 0 0

...

pixel spacelatent space



Let’s recall the change of variables formula with invertible 
transformations:

We can think of it as an invertible neural network:

103

THE CHANGE OF VARIABLES FORMULA
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Design the invertible transformations as follows:
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REALNVP

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



Design the invertible transformations as follows:


Invertible by design: 
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REALNVP

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



Design the invertible transformations as follows:


Invertible by design: 

Easy Jacobian:
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REALNVP

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.
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RESULTS



A model contains ~1000 convolutions.
A new component: 1x1 convolution instead of a permutation 
matrix.
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GLOW: REALNVP WITH 1X1 CONVOLUTIONS

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NeurIPS 2018
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GLOW: SAMPLES
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GLOW: LATENT INTERPOLATION
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INTEGER DISCRETE FLOW: NO NEED TO CALCULATE JACOBIAN!

Hoogeboom, E., Peters, J. W., Berg, R. V. D., & Welling, M. (2019). Integer Discrete Flows and Lossless Compression. NeurIPS 2019
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Future directions



How to avoid sampling from holes? 

Should we follow geodesics in the 
latent space? 

How to use geometry of the latent 
space to build better decoders? 

How to build temporal decoders? 
114

BLURRINESS AND SAMPLING IN VAES



Taking a deterministic & discrete 
encoder allows to simplify the objective.


It is important to learn a powerful prior. 
This is challenging!


Is it easier to learn a prior with temporal 
dependencies? 


Can we alleviate some dependencies by 
using hypernets?
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COMPRESSION AND VAES

Habibian, A., van Rozendaal, T., Tomczak, J.M., & Cohen, T.S. (2019), Video Compression with Rate-Distortion Autoencoders, ICCV 2019



Using latent representation to navigate 
and/or quantify uncertainty. 

Formulating policies in the latent space 
entirely. 

Do we need a better notion of sequential 
dependencies?

116

ACTIVE LEARNING/RL AND VAES

Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint arXiv:1803.10122.



We need a better understanding of the latent space. 

Joining an invertible model (flow-based model) with 
a predictive model. 

Isn’t this model an overkill? 

How would it work in the multi-modal learning 
scenario?

117

HYBRID AND FLOW-BASED MODELS

Nalisnick, E., et al. (2019). Hybrid models with deep and invertible features. arXiv preprint arXiv:1902.02767.



Going back to first slides, we need a good 
notion of p(x). 

Distinguishing out-of-distribution (OOD) 
samples is very important. 

Crucial for decision making, outlier 
detection, policy learning…
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HYBRID MODELS AND OOD SAMPLE

Nalisnick, Eric, et al. "Hybrid models with deep and invertible features." arXiv preprint arXiv:1902.02767 (2019).
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Thank you!



Webpage: 
https://jmtomczak.github.io/


Code on github: 
https://github.com/jmtomczak/


Contact: 
jmk.tomczak@gmail.com


