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What is generative modeling about?

Understanding:

p(y,x) = p(y|x) p(x)

finding underlying predicting and finding analogies
factors (discovery) anticipating future (transfer learning)
events (planning)

detecting rare events

(anomaly detection) decision making



Why generative modeling?

Why? —
Less labeled data 7 \\ Uncertainty
Hidden structure Compression

Exploration



Generative modeling: How?

How?

/ \
Latent variable

Fully-observed
(e.g., PixelCNN)

models
/ \
Implicit models Prescribed models
(e.g., GANSs) (e.g., VAE)



Generative modeling: Auto-regressive models

General idea is to factorise the joint distribution:
D

p(x) = p(z1) H p(Td|X1:d-1)

d=2

and use neural networks (e.g., convolutional NN) to model it efficiently:
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Van Den Oord, A., et al. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.



Generative modeling: Latent Variable Models
We assume data lies on a low-dimensional manifold so the generator is:
x = fo(z)
where:
x € X (e.g. X =R”) and z € R*

Two main approaches:
— Generative Adversarial Networks (GANS)

— Variational Auto-Encoders (VAES)
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Generative modeling: GANs
We assume a deterministic generator:

x = Gy(2z)
and a prior over latent space:

z ~ px(2)

How to train it?

For this purpose, we assume a discriminator:
Dy(x) € [0,1]




Generative modeling: GANs

The learning process is as follows:
— the tries to fool the discriminator;
— the discriminator tries to distinguish between the

and images.

We define the learning problem as a min-max problem:

m@in mgx Excpyora [ln Dy, (x)] —Eppy (2) [ln (1 — Dw(G(Z)))]

In fact, we have a learnable loss function!

Goodfellow, I., et al. (2014). Generative adversarial nets. NIPS 2014
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— the tries to fool the discriminator;
— the discriminator tries to distinguish between the real

and images.

We define the learning problem as a min-max problem:

m@in mgx Excpyora [ln Dy, (X)] —Eppy (2) [ln (1 — Dw(G(Z)))]

In fact, we have a learnable loss function!

— It learns high-order statistics.

Goodfellow, I., et al. (2014). Generative adversarial nets. NIPS 2014



Generative modeling: GANs

— we don’t need to specify a likelihood function;
— very flexible;

— the loss function is trainable;

— perfect for data simulation.

Cons:

— we don’t know the distribution;

— training is highly unstable (min-max objective);
— missing mode problem.



Generative modeling: VAEs

We assume a stochastic generator (decoder) and a prior:
z ~ px(z)
X ~ po(x|z)

Additionally, we use a variational posterior (encoder):
z ~ qg(2]X)

How to train it? Using the log-likelihood function!

Inp(x) > Eyg, (21x) [lnpg(xlz)} — KL [q¢(z|x)||p>\ (z)}

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. (/ICLR 2014)



Variational Auto-Encoder: Extensions

Fully-connected
Normalizing flows ConvNets
Volume-preserving flows PixelCNN
non-Gaussian distributions Other
1 Autoregressive Prior
Objective Prior
Importance Weighted AE Stick-Breaking Prior
Renyi Divergence VampPrior
Stein Divergence

Tomczak, J. M., & Welling, M. (2016). Improving variational auto-encoders using householder flow. NIPS Workshop 2016.

Berg, R. V. D., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. UAI 2018.
Tomczak, J. M., & Welling, M. (2017). VAE with a VampPrior. arXiv preprint arXiv:1705.07120. (AISTATS 2018)

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical Variational Auto-Encoders. UAI 2018.



Generative modeling: VAEs

— we know the distribution and can calculate the likelihood function;
— we can encode an object in a low-dim manifold (compression);

— training is stable;

— NO missing modes.

Cons:

— we need know the distribution;

— we need a flexible encoder and prior;
— blurry images (so far...).



Recent successes: Image generation
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Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. /ICLR 2017.



Recent successes: Reinforcement learning
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Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint. arXiv preprint arXiv:1803.10122.



Recent successes: Audio generation
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Recent successes: Drug discovery
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Gomez-Bombarelli, R., et al. (2018). Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules ACS Cent.

Kusner, M. J., Paige, B., & Hernandez-Lobato, J. M. (2017). Grammar variational autoencoder. arXiv preprint arXiv:1703.01925.



Recent successes: Style transfer
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Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. CVPR 2017.



Recent successes: Text generation
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(b) Digram of dilated CNN decoder.
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the food was good but the service was horrible . took forever to get our food . we had to ask
twice for our check after we got our food . will not return .

the food was good , but the service was terrible . took forever to get someone to take our drink
order . had to ask 3 times to get the check . food was ok , nothing to write about .

came here for the first time last night . food was good . service was a little slow . food was just
ok .

food was good , service was a little slow , but the food was pretty good . i had the grilled chicken
sandwich and it was really good . will definitely be back !

food was very good , service was fast and friendly . food was very good as well . will be back !
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Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017



Recent successes: Physics (interacting systems)
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Kipf, T., Fetaya, E., Wang, K. C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. ICML 2018.
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Next steps: video

processing, better priors

and decoders, geometr
methods, ...
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Code on github:
https://github.com/jmtomczak

Webpage:

http://jmtomczak.github.io/

Contact:
jakubmkt@gmail.com
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