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Motivation

Goal: Find (local) objects (abnormal 

changes in tissue) in an image.

Data: billions of pixels, 101-102 scans, 

weak labels (for regions or a scan).

Solution: Use local information in the 

image and look for Regions of 

Interest.
Ricci-Vitiani, L., et al. "Identification and expansion of human colon-cancer-initiating cells." Nature 445.7123 (2007): 111.
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Supervised Learning vs. Multiple Instance Learning

One image - one label Many images - one label

Individual labels:
                      are unknown.

Assumptions about the label Y :Instances with (yk = 1) = key instances
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A MIL classifier as a probabilistic model:

Must be permutation-invariant!

How?



Multiple Instance Learning

A MIL classifier as a probabilistic model:

Theorem (Zaheer et al., 2017)
A scoring function for a set of instances X,                 , is a symmetric function (i.e., permutation 
invariant to the elements in X), if and only if it can be decomposed in the following form:

S(X) = g(∑x∊X f(x))

where f and g are suitable transformations.



Multiple Instance Learning

A MIL classifier as a probabilistic model:

Theorem (Qi et al., 2017)
For any ε > 0, a Hausdorff continuous symmetric function                 can be arbitrarily 
approximated by a function in the form g(maxx∊X f(x)), where max is the element-wise vector 
maximum operator and f and g are continuous functions, that is:

|S(X) - g(maxx∊X f(x))| < ε.



Multiple Instance Learning

A MIL classifier as a probabilistic model:

The theorems say that we can model a permutation-invariant θ(X) by composing:

● a transformation f of individual instances,

● a permutation-invariant function σ, e.g., sum, mean or max (MIL pooling),

● a transformation of combined instances using a function g:

θ(X) = g(σ(f(x1), …, f(xK))
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Multiple Instance Learning: Components

We model both transformations f and g using neural networks.

Two approaches:

- embedded-based

- instance-based

MIL pooling:

- mean,

- max,

- other (e.g., Noisy-Or).



Multiple Instance Learning: Components

Issues:

- Embedded-based approach

lacks interpretability.

- Instance-based approach

propagates error.

- max and mean are non-learnable.
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Multiple Instance Learning: Attention-based approach

We propose to use the attention mechanism as MIL pooling:

where: 

attention with gating mechanism



Multiple Instance Learning: Attention-based approach

The attention mechanism as MIL pooling:

- MIL operator is trainable;

- attention weights could be 

interpreted (key instances).

Embedded-based approach

is interpretable and fully trainable.
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large images.
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interpretable and learnable 
MIL pooling.

Next step: Application to 
whole-slide classification.
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Code on github:
https://github.com/AMLab-Amsterdam/AttentionDeepMIL

Contact:
ilse.maximilian@gmail.com
jakubmkt@gmail.com
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