Attention-based
Deep Multiple
Instance
Learning

Maximilian llse, Jakub Tomczak, Max Welling

AMLAB, University of Amsterdam

ICML 2018



Motivation

Typical size of benchmark

natural images: up to 256x256




Motivation

Typical size of benchmark

natural images: up to 256x256

Typical size of medical images:
~10,000x10,000




Motivation

Typical size of benchmark

natural images: up to 256x256

Typical size of medical images:
~10,000x10,000

How to process it?




Motivation

Goal: Find (local) objects (abnormal

changes in tissue) in an image.




Motivation

Goal: Find (local) objects (abnormal

changes in tissue) in an image.

Data: billions of pixels, 10'-10? scans,

weak labels (for regions or a scan).



Motivation

Goal: Find (local) objects (abnormal

changes in tissue) in an image.

Data: billions of pixels, 10'-10? scans,

weak labels (for regions or a scan).

Solution: Use local information in the
image and look for Regions of

Interest.

Ricci-Vitiani, L., et al. "Identification and expansion of human colon-cancer-initiating cells." Nature 445.7123 (2007): 111.
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Supervised Learning vs. Multiple Instance Learning

Many images - one label %’
X ={x1,...,xx},

Y € {0,1}

Individual labels:

/’{yla ..., YK } are unknown.

Assumptions about the label Y:

V — {O, iff Zkyk:(),

1, otherwise.

Instances with (y, = 1) = key instances




Multiple Instance Learning

A MIL classifier as a probabilistic model:

p(YIX) = 0(X) (1-0(X))



Multiple Instance Learning

A MIL classifier as a probabilistic model:

p(YIX) = 6(X)" (1-0(x))’
s

Must be permutation-invariant!

—-Y




Multiple Instance Learning

A MIL classifier as a probabilistic model:

p(Y|X) =0(X)" (1-0(X))
~

Must be permutation-invariant!

1-Y

How?



Multiple Instance Learning

A MIL classifier as a probabilistic model:

p(Y|X) =0(X)" (1-0(X))

1-Y

Theorem (Zaheer et al., 2017)

A scoring function for a set of instances X, S(X) € R, is a symmetric function (i.e., permutation
invariant to the elements in X), if and only if it can be decomposed in the following form:

S(X) = 82y S1X)

where fand g are suitable transformations.




Multiple Instance Learning

A MIL classifier as a probabilistic model:

p(YIX) = 0(X) (1-0(X))

Theorem (Qi et al., 2017)

For any € > 0, a Hausdorff continuous symmetric function S(X) € R can be arbitrarily
approximated by a function in the form g(max _, fix)), where max is the element-wise vector
maximum operator and fand g are continuous functions, that is:

S(X) - g(max ., fix))| < €.




Multiple Instance Learning

A MIL classifier as a probabilistic model:

p(Y]X) = 0(X)" (1-0(X))

The theorems say that we can model a permutation-invariant 6(X) by composing:

a transformation f of individual instances,
a permutation-invariant function o, e.g., sum, mean or max (MIL pooling),

a transformation of combined instances using a function g:

0(X) = glo(fix)), ..., fix,))
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We model both transformations fand g using neural networks.

Two approaches: %/ .

- embedded-based e I,

- instance-based

MIL pooling:

- mean, %/ [

- maX, L ) —

- other (e.g., Noisy-Or). -
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Multiple Instance Learning: Components

Issues:

- Embedded-based approach %/ B

lacks interpretability. f

- Instance-based approach

propagates error. .

- max and mean are non-learnable. %/

MIL

o | ——— e e

MIL

ol ——»[]



Multiple Instance Learning: Attention-based approach

We propose to use the attention mechanism as MIL pooling:
K
Z — Z akhk,
k=1

where: %/ I _

exp{vv,;r tanh (Vh;)} cee _f

| cee E -

N

ar —

K
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Multiple Instance Learning: Attention-based approach

We propose to use the attention mechanism as MIL pooling:
K
Z — Z akhk,
k=1

where: %/ I _

exp{w, (tanh (Vh} ) ®sigm(Uh}))} *ee L |][|see P—

ap — )

Z exp{w] (tanh (Vh,) ®sigm(Uh/))}

J=1

attention with gating mechanism




Multiple Instance Learning: Attention-based approach

The attention mechanism as MIL pooling:
- MIL operator is trainable;

- attention weights could be

interpreted (key instances). %/

Embedded-based approach

is interpretable and fully trainable.
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Experiments: MNIST-based problem

a1=0.08884 a5=0.09065 a3=0.11254 a4=0.07189 a5=0.05136 ag=0.03091 a;=0.07404

ag=0.07412 a9=0.16541 a19=0.02777 a11=0.11683 a12=0.04244 a;3=0.0532




Experiments: MNIST-based problem

a1=0.00002 |ay=0.22608

ag=0.00002 |a9=0.28002 | a19=0.00006 a1;=0.00006 a12=0.00009 ja,3=0.24581




Experiments: MNIST-based problem
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Experiments: Breast Cancer

METHOD ACCURACY PRECISION RECALL F-SCORE AUC

Instance+max 0.614+0.020  0.5854+0.03  0.477+0.087 0.506+0.054 0.6124+0.026
Instance+mean 0.672+0.026 0.672+0.034 0.515+£0.056 0.577+£0.049 0.719+0.019
Embedding+max 0.607+0.015 0.558+0.013 0.546+0.070 0.543+0.042 0.65040.013
Embedding+mean  0.741+0.023  0.741+0.023  0.654+0.054 0.689+0.034 0.796+0.012
Attention 0.745+0.018 0.718+£0.021 0.715£0.046  0.712£0.025 0.775+£0.016
Gated-Attention 0.7554+0.016  0.728+0.016  0.731+0.042  0.725+0.023  0.799+0.020




Experiments: Colon Cancer

METHOD ACCURACY PRECISION RECALL F-SCORE AUC

Instance+max 0.842 = 0.021 0.866 £0.017 0.816 & 0.031 0.839 +=0.023 0914 £ 0.010
Instance+mean 0.772 £0.012 0.821 £0.011 0.710 £0.031 0.759 = 0.017 0.866 + 0.008
Embedding+max 0.824 £0.015 0.884 £0.014 0.753 £ 0.020 0.813 +0.017 0918 £+ 0.010
Embedding+mean 0.860 = 0.014 0911 £0.011  0.804 £ 0.027 0.853 £ 0.016  0.940 £+ 0.010
Attention 0.904 £ 0.011 0953 £0.014 0.8551+0.017 0901 +=0.011 0.968 + 0.009
Gated-Attention 0.898 £ 0.020 0.944 = 0.016 0.851 +=0.035 0.893 +0.022 0.968 + 0.010




Experiments: Colon Cancer

(d)

Figure 10. Colon cancer example 1: (a) H&E stained histopathology image. (b) 27 x27 patches centered around all marked nuclei. (c)
Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight.

(e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights
and instance scores using a;, = a; — min(a)/(max(a) — min(a)).



Experiments: Colon Cancer

Figure 11. Colon cancer example 2: (a) H&E stained histopathology image. (b) 27 x27 patches centered around all marked nuclei. (c)
Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight.

(e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights
and instance scores using aj, = ar — min(a)/(max(a) — min(a)).



Experiments: Colon Cancer

(d)

Figure 12. Colon cancer example 3: (a) H&E stained histopathology image. (b) 27 x27 patches centered around all marked nuclei. (c)
Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight.
(e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights
and instance scores using aj, = ar — min(a)/(max(a) — min(a)).
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Conclusion

<\Deep MIL: a flexible
approach to cope with

large images.

Next step: Application to

whole-slide classification.
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N

Attention mechanism:
interpretable and learnable
MIL pooling.

Next step: taking into
account spatial

dependencies (non i.i.d.
instances). \)



Code on github:
https://github.com/AMLab-Amsterdam/AttentionDeepMIL

Contact:

ilse.maximilian@gmail.com
jakubmkt@gmail.com
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