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A possible solution? →Models with latent variables
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Latent variable model:

If   and       ,
then we get Factor Analysis.

What if we take a non-linear transformation of z?
→an infinite mixture of Gaussians

 
Neural network

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford University Press, Oxford, 129-144.

Not scalable...
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Jensen’s inequality



Variational inference for Latent Variable Models

Reconstruction error Regularization
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Variational Auto-Encoder

Let us assume the following distributions:

encoder

decoder

prior

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

simplest case
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Importance Weighted AE
Renyi Divergence
Stein Divergence



Variational Auto-Encoder

Autoregressive Prior
Objective Prior
Stick-Breaking Prior
VampPrior
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min.

Standard prior is too strong and 
overregularizes the encoder.

What is the “optimal” prior?
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New Prior (Variational Mixture of Posteriors Prior)

● We look for the optimal prior using the Lagrange function:

● The solution is simply the aggregated posterior.

● We approximate it using K pseudo-inputs instead of N observations:

they are trained from scratch
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New Prior (Variational Mixture of Posteriors Prior)

● VampPrior is closely related to the Empirical Bayes.

○ We propose a new approach that learns parameters of the prior and combines the variational 

inference with the EB approach.

● VampPrior is closely related to the Information Bottleneck.

○ The aggregated posterior naturally plays the role of the prior.

○ The VampPrior brings the VAE and the IB formulations together.
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Hierarchical VampPrior VAE

It counteracts inactive stochastic 
hidden units problem!

Typical issue in hierarchical VAE: inactive stochastic units

u



Experiments



Experiments



Experiments



Experiments







Phantasies



Conclusion

The prior in VAE is 
extremely important.

VampPrior = approximated 
aggregated posterior as 
the optimal prior

Hierarchical VampPrior VAE 
→ less inactive stochastic 
units.

Multimodal prior → better 
generative process



Conclusion

The prior in VAE is 
extremely important.

VampPrior = approximated 
aggregated posterior as 
the optimal prior

Hierarchical VampPrior VAE 
→ less inactive stochastic 
units.

Multimodal prior → better 
generative process



Conclusion

The prior in VAE is 
extremely important.

VampPrior = approximated 
aggregated posterior as 
the optimal prior

Hierarchical VampPrior VAE 
→ less inactive stochastic 
units.

Multimodal prior → better 
generative process



Conclusion

The prior in VAE is 
extremely important.

VampPrior = approximated 
aggregated posterior as 
the optimal prior

Hierarchical VampPrior VAE 
→ less inactive stochastic 
units.

Multimodal prior → better 
generative process



Conclusion

The prior in VAE is 
extremely important.

VampPrior = approximated 
aggregated posterior as 
the optimal prior

Hierarchical VampPrior VAE 
→ less inactive stochastic 
units.

Multimodal prior → better 
generative process



Future directions

VampPrior + 
Normalizing flows



Future directions

VampPrior for other 
data (sequential, 
sound, text, genomics, 
etc.)

→RNN posteriors



Future directions

How to (better) learn 
pseudoinputs?

→MCMC?

→Wake-Sleep?



Webpage:
https://jmtomczak.github.io/

Code on github:
https://github.com/jmtomczak/
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