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Introduction



We learn a neural network to classify images:
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We learn a neural network to classify images:

There is no semantic understanding of images.
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This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.
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This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.

A possible solution is generative modeling.
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WHERE DO WE USE DEEP GENERATIVE 
MODELING?

Image analysis

Reinforcement Learning

Audio analysis

Text analysis

Graph 
analysis

and more...
Active Learning

Medical data
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HOW TO FORMULATE GENERATIVE MODELS?

Generative 
model

Autoregressive 
(e.g., PixelCNN)

Implicit models 
(e.g., GANs)

Prescribed models 
(e.g., VAE)

Latent variable 
models

Flow-based  
(e.g., RealNVP, GLOW)
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HOW TO FORMULATE GENERATIVE MODELS?

Training Likelihood Sampling Compression

Autoregressive models 
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes
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GENERATIVE MODELS AS (SPHERICAL) 
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flow-based models
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GENERATIVE MODELS AS (SPHERICAL) 
COWS

flow-based models latent variable models
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Deep latent variable models



Modeling in high-dimensional spaces is difficult.
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Modeling in high-dimensional spaces is difficult.
Modeling all dependencies among pixels:
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Modeling in high-dimensional spaces is difficult.
Modeling all dependencies among pixels:

A possible solution: Latent Variable Models!
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GENERATIVE MODELING

problematic



Generative process:

Log of marginal distribution:

How to train such model efficiently? 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VARIATIONAL INFERENCE FOR LATENT 
VARIABLE MODELS
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VARIATIONAL INFERENCE FOR LATENT 
VARIABLE MODELS

Variational posterior
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VARIATIONAL INFERENCE FOR LATENT 
VARIABLE MODELS

Jensen’s inequality
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VARIATIONAL INFERENCE FOR LATENT 
VARIABLE MODELS

Reconstruction error Regularization
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VARIATIONAL INFERENCE FOR LATENT 
VARIABLE MODELS

decoder

encoder

marginal
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VARIATIONAL INFERENCE FOR LATENT 
VARIABLE MODELS

= Variational Auto-Encoder

decoder

encoder

marginal



Variational posterior 
(encoder) and likelihood 
function (decoder) are 
parameterized by neural 
networks.

Reparameterization trick: 
move the stochasticity to 
independent random variables
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µ

σ

encoder net decoder netcode

VARIATIONAL AUTO-ENCODERS

z = f(µ,�; "), where " ⇠ p(")
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VAE copies input to output through a bottleneck.
VAE learns a code of the data.
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VAE copies input to output through a bottleneck.
VAE learns a code of the data.
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VARIATIONAL AUTO-ENCODERS
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VAE has a marginal on the latent code.
VAE can generate new data.
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VARIATIONAL AUTO-ENCODERS



VAE has a marginal on the latent code.
VAE can generate new data.
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VAE has a marginal on the latent code.
VAE can generate new data.
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0

decoder netcode

VARIATIONAL AUTO-ENCODERS

p(z)
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COMMON ISSUES WITH VAES

Weak decoders  bad generations/reconstructions


Weak encoders  bad latent representation


Weak marginals  bad generations


Variational posteriors  what family of distributions?


Others…

→

→

→

→
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COMPONENTS OF VAES

Resnets

DRAW

Autoregressive models

Normalizing flows


Autoregressive models

Normalizing flows

VampPrior 
Implicit prior
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COMPONENTS OF VAES

Normalizing flows 
Discrete encoders 
Hyperspherical dist. 
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Group theory

Resnets

DRAW

Autoregressive models

Normalizing flows


Autoregressive models

Normalizing flows

VampPrior 
Implicit prior

Adversarial learning

MMD

Wasserstein AE
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APPLICATIONS

Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4.2 (2018)
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APPLICATIONS

Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017
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APPLICATIONS

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.

reconstruction generation
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APPLICATIONS

Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint. arXiv preprint arXiv:1803.10122.
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APPLICATIONS

Kipf, T., Fetaya, E., Wang, K. C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. ICML 2018.
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Flow-based models



Let’s recall the change of variables formula with invertible 
transformations:

We can think of it as an invertible neural network:
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THE CHANGE OF VARIABLES FORMULA

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.
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Design the invertible transformations as follows:
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REALNVP

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



Design the invertible transformations as follows:


Invertible by design: 
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Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



Design the invertible transformations as follows:


Invertible by design: 

Easy Jacobian:
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REALNVP

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.
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RESULTS
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RESULTS



A model contains ~1000 convolutions.
A new component: 1x1 convolution instead of a permutation 
matrix.
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GLOW: REALNVP WITH 1X1 CONVOLUTIONS

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NeurIPS 2018
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GLOW: SAMPLES
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GLOW: LATENT INTERPOLATION
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INTEGER DISCRETE FLOW: NO NEED TO 
CALCULATE JACOBIAN!

Hoogeboom, E., Peters, J. W., Berg, R. V. D., & Welling, M. (2019). Integer Discrete Flows and Lossless Compression. NeurIPS 2019
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Future directions



How to avoid sampling from holes? 

Should we follow geodesics in the 
latent space? 

How to use geometry of the latent 
space to build better decoders? 

How to build temporal decoders? 
70

BLURRINESS AND SAMPLING IN VAES



Taking a deterministic & discrete 
encoder allows to simplify the objective.


It is important to learn a powerful prior. 
This is challenging!


Is it easier to learn a prior with temporal 
dependencies? 


Can we alleviate some dependencies by 
using hypernets?
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COMPRESSION AND VAES

Habibian, A., van Rozendaal, T., Tomczak, J.M., & Cohen, T.S. (2019), Video Compression with Rate-Distortion Autoencoders, ICCV 2019



Using latent representation to navigate 
and/or quantify uncertainty. 

Formulating policies in the latent space 
entirely. 

Do we need a better notion of sequential 
dependencies?
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ACTIVE LEARNING/RL AND VAES

Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint arXiv:1803.10122.



We need a better understanding of the latent space. 

Joining an invertible model (flow-based model) with 
a predictive model. 

Isn’t this model an overkill? 

How would it work in the multi-modal learning 
scenario?
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HYBRID AND FLOW-BASED MODELS

Nalisnick, E., et al. (2019). Hybrid models with deep and invertible features. arXiv preprint arXiv:1902.02767.



Going back to first slides, we need a good 
notion of p(x). 

Distinguishing out-of-distribution (OOD) 
samples is very important. 

Crucial for decision making, outlier 
detection, policy learning…
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HYBRID MODELS AND OOD SAMPLE

Nalisnick, Eric, et al. "Hybrid models with deep and invertible features." arXiv preprint arXiv:1902.02767 (2019).
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Thank you!



Webpage: 
https://jmtomczak.github.io/


Code on github: 
https://github.com/jmtomczak/


Contact: 
jmk.tomczak@gmail.com


