WHY DO WE NEED DEEP GENERATIVE MODELING?

Jakub M. Tomczak 13 January 2020

Introduction

We learn a neural network to classify images:

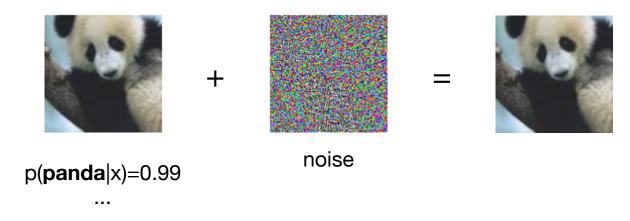
We learn a neural network to classify images:

We learn a neural network to classify images:

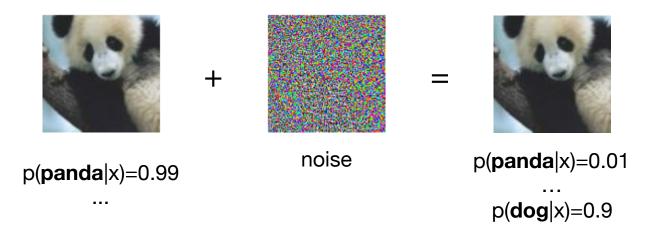
p(**panda**|x)=0.99

...

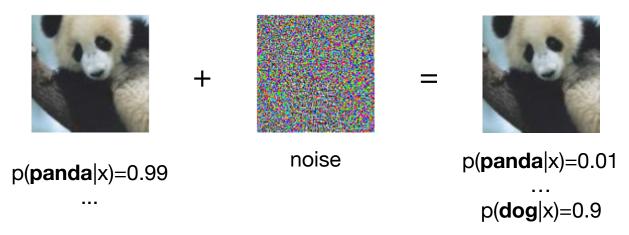
We learn a neural network to classify images:



We learn a neural network to classify images:



We learn a neural network to classify images:



There is no semantic understanding of images.

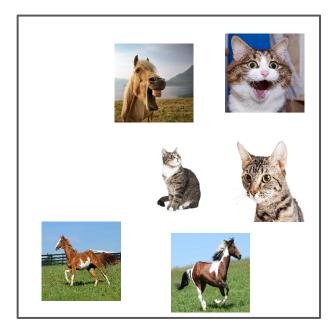
This simple example shows that:

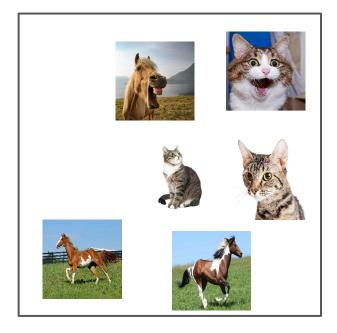
- A discriminative model is (probably) not enough.
- We need a notion of uncertainty.
- We need to **understand** the reality.

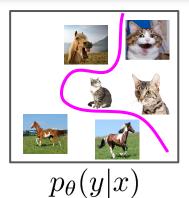
This simple example shows that:

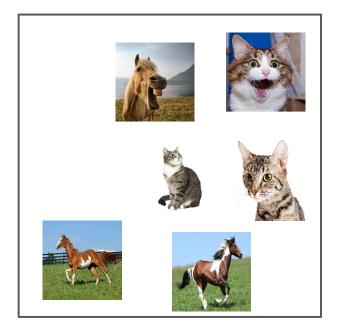
- A discriminative model is (probably) not enough.
- We need a notion of **uncertainty**.
- We need to **understand** the reality.

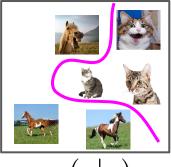
A possible solution is generative modeling.



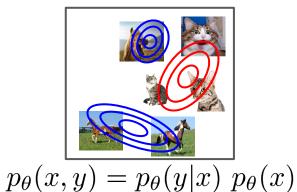


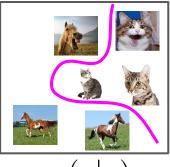




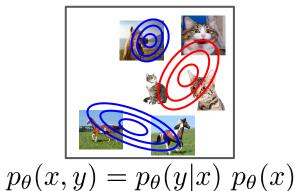


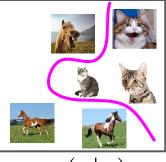
 $p_{\theta}(y|x)$





 $p_{\theta}(y|x)$

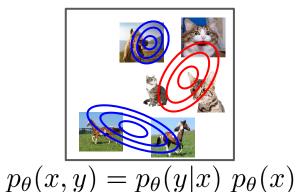


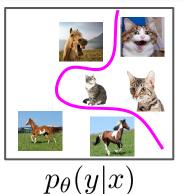


 $p_{\theta}(y|x)$

High probability of a **horse**.

Highly probable decision!





High probability of a **horse**.

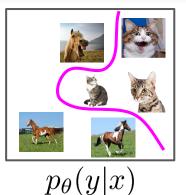
Highly probable decision!

 $p_{\theta}(x,y) = p_{\theta}(y|x) \ p_{\theta}(x)$

High probability of a horse. X Low probability of the object = Uncertain

decision!

VU



High probability of a **horse**.

Highly probable decision!

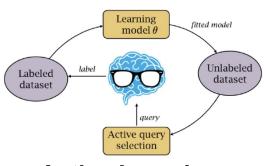
 $p_{\theta}(x,y) = p_{\theta}(y|x)(p_{\theta}(x))$ High probability of a horse. Х Low probability of the object Uncertain decision!

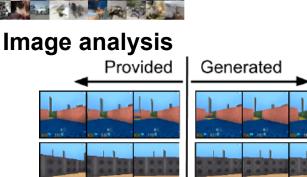
WHERE DO WE USE DEEP GENERATIVE MODELING?

" i want to talk to you . " "i want to be with you . " "i do n't want to be with you . " i do n't want to be with you . she did n't want to be with him .

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

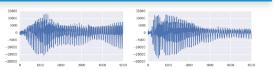
Text analysis



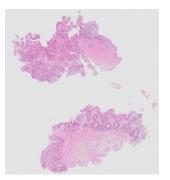


Graph

analysis

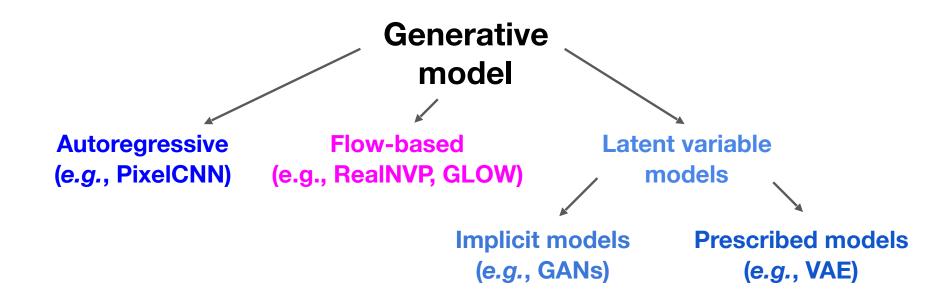


Audio analysis



Medical data

HOW TO FORMULATE GENERATIVE MODELS?



HOW TO FORMULATE GENERATIVE MODELS?

	Training	Likelihood	Sampling	Compression
Autoregressive models (e.g., PixelCNN)	Stable	Exact	Slow	No
Flow-based models (e.g., RealNVP)	Stable	Exact	Fast/Slow	No
Implicit models (e.g., GANs)	Unstable	Νο	Fast	No
Prescribed models (e.g., VAEs)	Stable	Approximate	Fast	Yes

HOW TO FORMULATE GENERATIVE MODELS?

		Training	Likelihood	Sampling	Compression
	Autoregressive models (e.g., PixelCNN)	Stable	Exact	Slow	Νο
$\left(\right)$	Flow-based models (e.g., RealNVP)	Stable	Exact	Fast/Slow	Νο
	Implicit models (e.g., GANs)	Unstable	No	Fast	No
$\left(\right)$	Prescribed models (e.g., VAEs)	Stable	Approximate	Fast	Yes

GENERATIVE MODELS AS (SPHERICAL) COWS

GENERATIVE MODELS AS (SPHERICAL) COWS

flow-based models

GENERATIVE MODELS AS (SPHERICAL) COWS

flow-based models

latent variable models

Deep latent variable models

Modeling in high-dimensional spaces is difficult.

Modeling in high-dimensional spaces is difficult.

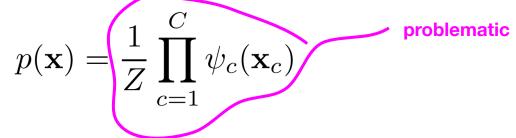
Modeling in high-dimensional spaces is difficult.

Modeling **all dependencies** among pixels:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c=1}^{C} \psi_c(\mathbf{x}_c)$$

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:



Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

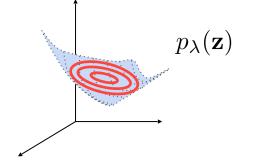
 $p(\mathbf{x}) = \frac{1}{Z} \prod_{c=1}^{C} \psi_c(\mathbf{x}_c) \qquad \text{problematic}$

A possible solution: Latent Variable Models!

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

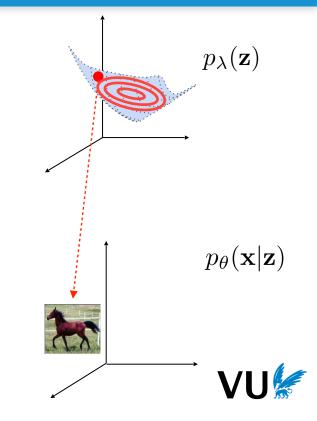


 $p_{\theta}(\mathbf{x}|\mathbf{z})$

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

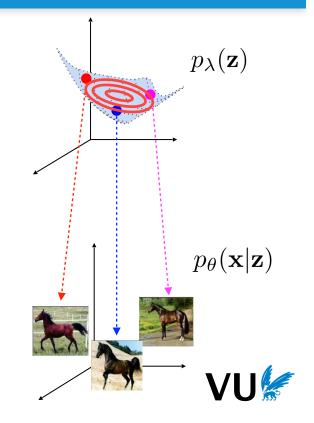
2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$



Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$



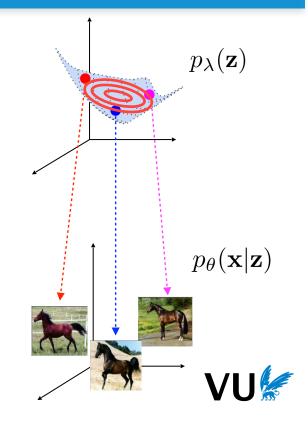
Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

Log of marginal distribution:

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$



Generative process:

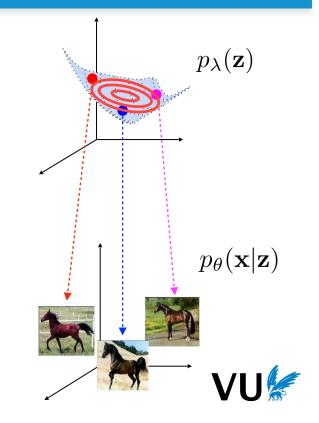
1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

Log of marginal distribution:

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

How to train such model efficiently?



VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \\ &= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right) \end{split}$$

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} & \text{Variational posterior} \\ &= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right) \end{split}$$

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$= \underbrace{\log} \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$
Jensen's inequality
$$\underbrace{\geq} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \underbrace{\log p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}_{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\lambda}(\mathbf{z})\right)$$

39

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \underbrace{\operatorname{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right)}_{\operatorname{Reconstruction error}} \operatorname{Regularization} \mathbf{VU} \overset{\mathsf{M}}{\overset{\mathsf{M}}}$$

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \qquad \text{decoder}$$

$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \qquad \text{encoder}$$

$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \qquad \text{marginal}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right)$$

VUJ 🎽

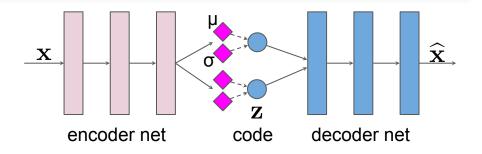
$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} & \text{decoder} \\ &= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} & \text{encoder} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} & \text{marginal} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\lambda}(\mathbf{z}) \right) \end{split}$$

= Variational Auto-Encoder VU

Variational posterior (encoder) and likelihood function (decoder) are parameterized by neural networks.

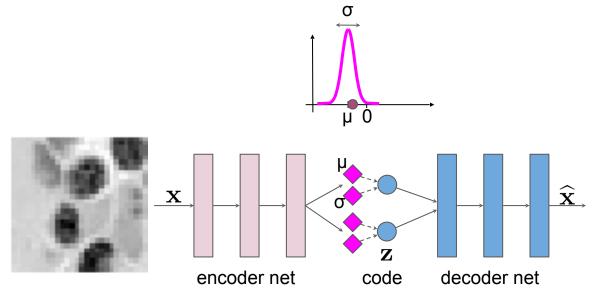
Reparameterization trick:

move the stochasticity to independent random variables

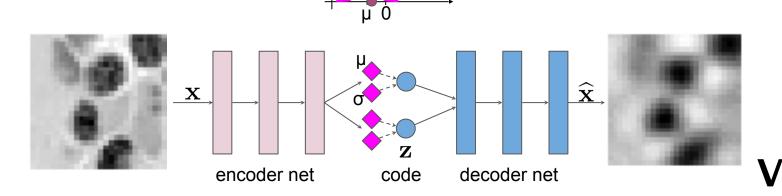


$$\mathbf{z} = f(\boldsymbol{\mu}, \boldsymbol{\sigma}; \boldsymbol{\varepsilon}), \text{ where } \boldsymbol{\varepsilon} \sim p(\boldsymbol{\varepsilon})$$

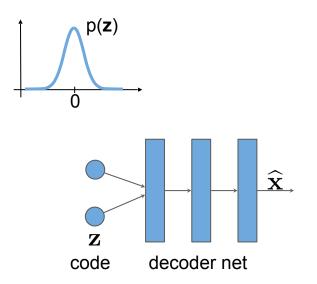
VAE copies input to output through a **bottleneck**. VAE learns a **code** of the data.



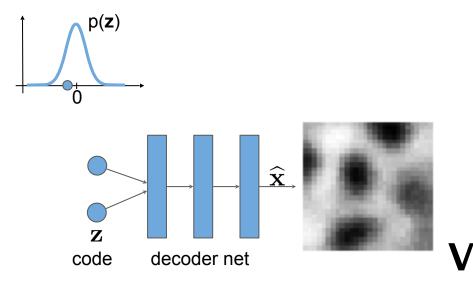
VAE copies input to output through a **bottleneck**. VAE learns a **code** of the data.



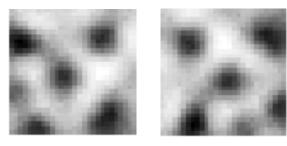
VAE has a marginal on the latent code. VAE can generate new data.

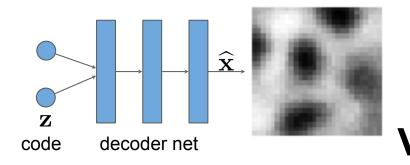


VAE has a marginal on the latent code. VAE can generate new data.



VAE has a marginal on the latent code. VAE can generate new data.





p(z)

COMMON ISSUES WITH VAES

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \, p_{\lambda}(\mathbf{z})$

Weak decoders \rightarrow bad generations/reconstructions

Weak encoders \rightarrow bad latent representation

Weak marginals \rightarrow bad generations

Variational posteriors \rightarrow what family of distributions?

Others...

COMPONENTS OF VAES

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

COMPONENTS OF VAES

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Normalizing flows

Discrete encoders

Hyperspherical dist.

Hyperbolic-normal dist. Group theory Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

COMPONENTS OF VAES

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

Normalizing flows

Discrete encoders

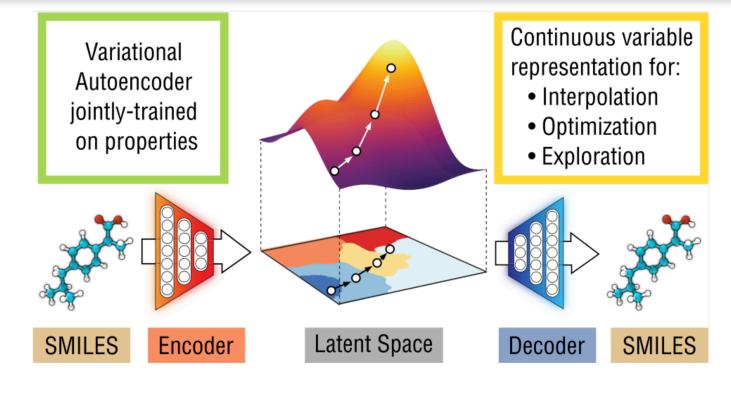
Hyperspherical dist.

Hyperbolic-normal dist. Group theory

ELBO($\mathbf{x}; \theta, \phi, \lambda$) ----

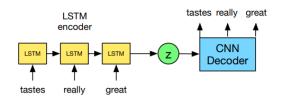
Resnets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows **VampPrior** Implicit prior

Adversarial learning MMD Wasserstein AE

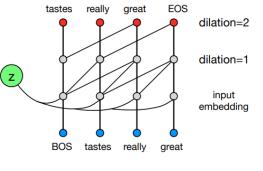


52

Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4.2 (2018)



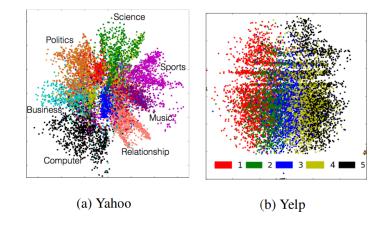
(a) VAE training graph using a dilated CNN decoder.



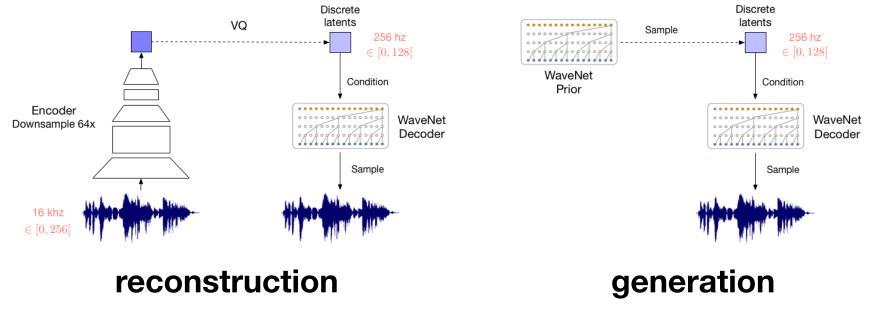
(b) Digram of dilated CNN decoder.

53

- **1 star** the food was good but the service was horrible . took forever to get our food . we had to ask twice for our check after we got our food . will not return .
- **2 star** the food was good, but the service was terrible. took forever to get someone to take our drink order. had to ask 3 times to get the check. food was ok, nothing to write about.
- **3 star** came here for the first time last night . food was good . service was a little slow . food was just ok .
- **4 star** food was good, service was a little slow, but the food was pretty good. i had the grilled chicken sandwich and it was really good. will definitely be back !
- 5 star food was very good, service was fast and friendly. food was very good as well. will be back !

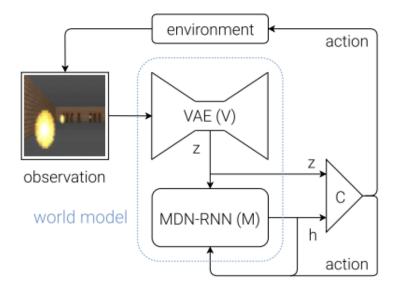


Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017

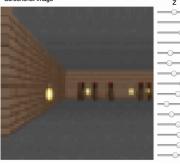


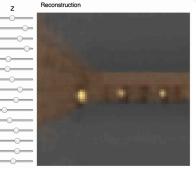
54

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.



Screenshot Image

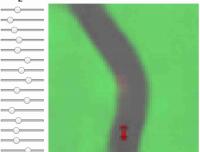




Screenshot Image

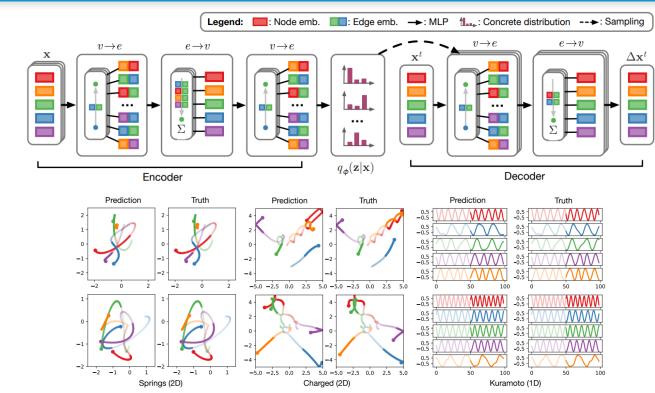
_____ -0----____ _____

z



Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint. arXiv preprint arXiv:1803.10122.

56



VU

Kipf, T., Fetaya, E., Wang, K. C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. ICML 2018.

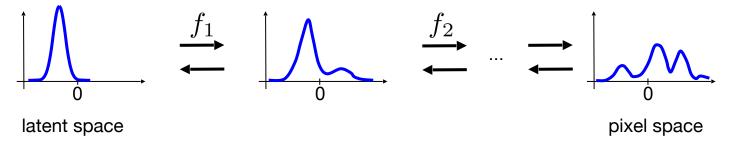
Flow-based models

THE CHANGE OF VARIABLES FORMULA

Let's recall the change of variables formula with invertible transformations: $K_{\perp} = \frac{\partial f_{\perp}(\mathbf{r}_{\perp}, \cdot)}{\partial f_{\perp}(\mathbf{r}_{\perp}, \cdot)}$

$$p(\mathbf{x}) = \pi_0(\mathbf{z}_0) \prod_{i=1}^{N} \left| \det \frac{\partial f_i(\mathbf{z}_{i-1})}{\partial \mathbf{z}_{i-1}} \right|^{-1}$$

We can think of it as an invertible neural network:



58

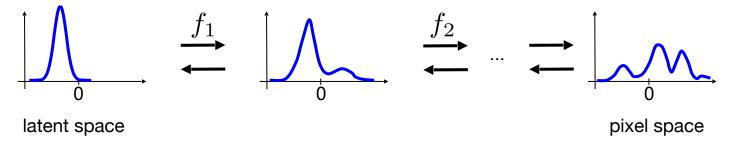
Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.

THE CHANGE OF VARIABLES FORMULA

Let's recall the change of variables formula with invertible transformations: $K_{\perp} = 2f_{\star}(q_{\perp})^{-1}$

$$p(\mathbf{x}) = \pi_0(\mathbf{z}_0) \prod_{i=1}^{K} \left| \det \frac{\partial f_i(\mathbf{z}_{i-1})}{\partial \mathbf{z}_{i-1}} \right|^{-1}$$

We can think of it as an invertible neural network:



Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.

REALNVP

60

Design the invertible transformations as follows:

$$\mathbf{y}_{1:d} = \mathbf{x}_{1:d}$$
$$\mathbf{y}_{d+1:D} = \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right)$$

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

REALNVP

Design the invertible transformations as follows:

$$\mathbf{y}_{1:d} = \mathbf{x}_{1:d}$$
$$\mathbf{y}_{d+1:D} = \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right)$$

Invertible by design:

$$\begin{aligned} \mathbf{y}_{1:d} &= \mathbf{x}_{1:d} \\ \mathbf{y}_{d+1:D} &= \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right) \\ &\Leftrightarrow \begin{cases} \mathbf{x}_{1:d} &= \mathbf{y}_{1:d} \\ \mathbf{x}_{d+1:D} &= \left(\mathbf{y}_{d+1:D} - t\left(\mathbf{y}_{1:d}\right)\right) \odot \exp\left(-s\left(\mathbf{y}_{1:d}\right)\right) \end{cases} \end{aligned}$$

61

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

REALNVP

Design the invertible transformations as follows:

$$\mathbf{y}_{1:d} = \mathbf{x}_{1:d}$$
$$\mathbf{y}_{d+1:D} = \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right)$$

Invertible by design:

$$\begin{aligned} \mathbf{y}_{1:d} &= \mathbf{x}_{1:d} \\ \mathbf{y}_{d+1:D} &= \mathbf{x}_{d+1:D} \odot \exp\left(s\left(\mathbf{x}_{1:d}\right)\right) + t\left(\mathbf{x}_{1:d}\right) \\ &\Leftrightarrow \begin{cases} \mathbf{x}_{1:d} &= \mathbf{y}_{1:d} \\ \mathbf{x}_{d+1:D} &= \left(\mathbf{y}_{d+1:D} - t\left(\mathbf{y}_{1:d}\right)\right) \odot \exp\left(-s\left(\mathbf{y}_{1:d}\right)\right) \end{cases} \end{aligned}$$

Easy Jacobian:

62

$$\mathbf{J} = \begin{bmatrix} \mathbb{I}_d & \mathbf{0}_{d \times (D-d)} \\ \frac{\partial \mathbf{y}_{d+1:D}}{\partial \mathbf{x}_{1:d}} & \operatorname{diag}\left(\exp\left(s\left(\mathbf{x}_{1:d}\right)\right)\right) \end{bmatrix} \qquad \det(\mathbf{J}) = \prod_{j=1}^{D-d} \exp\left(s\left(\mathbf{x}_{1:d}\right)\right)_j = \exp\left(\sum_{j=1}^{D-d} s\left(\mathbf{x}_{1:d}\right)_j\right)$$

1

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

RESULTS

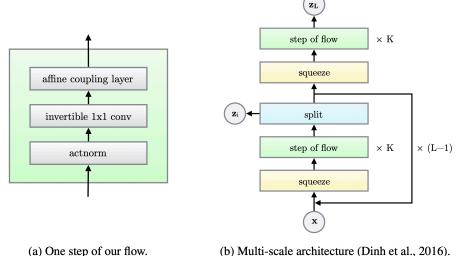
RESULTS

GLOW: REALNVP WITH 1X1 CONVOLUTIONS

A model contains ~1000 convolutions.

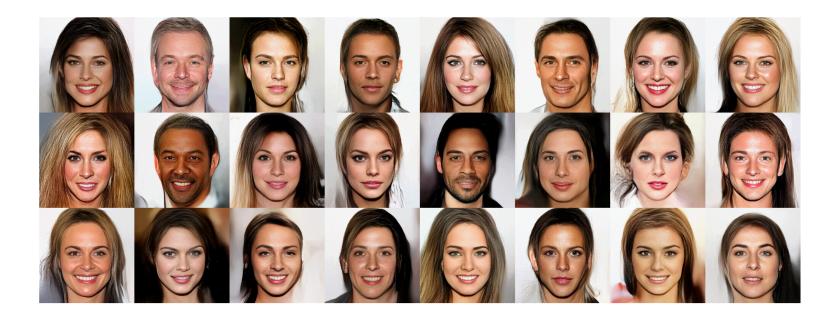
A new component: 1x1 convolution instead of a permutation

matrix.



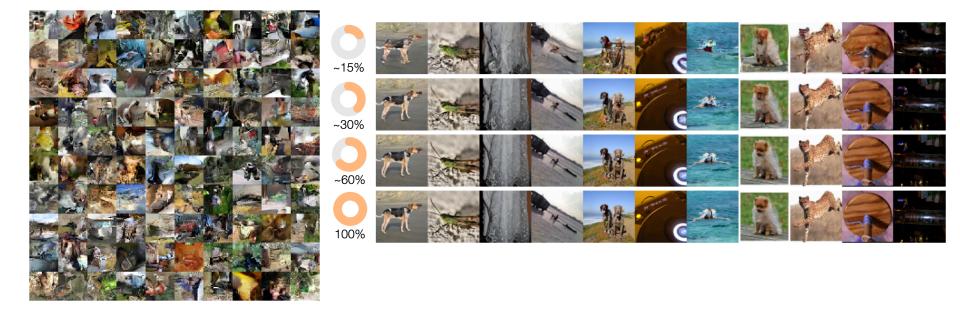
Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NeurIPS 2018

GLOW: SAMPLES



GLOW: LATENT INTERPOLATION

INTEGER DISCRETE FLOW: NO NEED TO CALCULATE JACOBIAN!



68

Hoogeboom, E., Peters, J. W., Berg, R. V. D., & Welling, M. (2019). Integer Discrete Flows and Lossless Compression. NeurIPS 2019

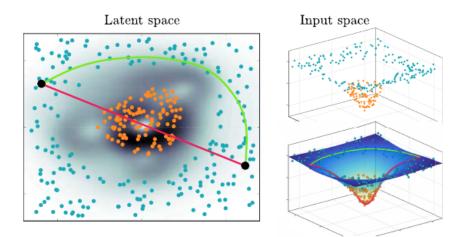
Future directions

BLURRINESS AND SAMPLING IN VAES

How to avoid sampling from holes?

Should we follow geodesics in the latent space?

How to use **geometry** of the latent space to build better **decoders**?



COMPRESSION AND VAES

Taking a **deterministic & discrete encoder** allows to simplify the objective.

It is important to learn a **powerful prior**. This is challenging!

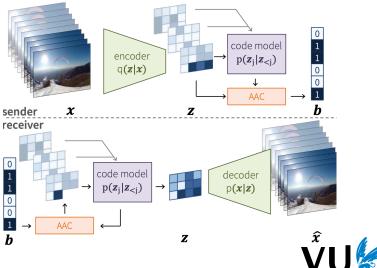
Is it **easier** to learn a prior with **temporal dependencies**?

Can we alleviate some dependencies by using hypernets?

71

Habibian, A., van Rozendaal, T., Tomczak, J.M., & Cohen, T.S. (2019), Video Compression with Rate-Distortion Autoencoders, ICCV 2019

RE(x|z) - H[q(z|x)] - CE[q(z)||p(z)]= RE(x|z) - CE[q(z)||p(z)]

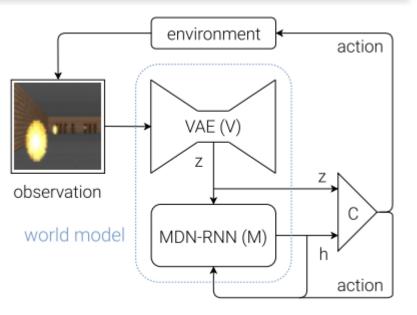


ACTIVE LEARNING/RL AND VAES

Using latent representation to navigate and/or quantify uncertainty.

Formulating **policies** in the latent space entirely.

Do we need a better notion of **sequential dependencies**?



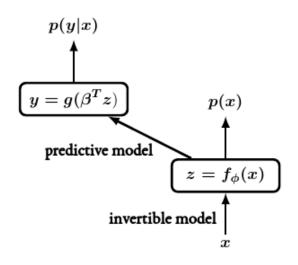
HYBRID AND FLOW-BASED MODELS

We need a **better understanding** of the latent space.

Joining an **invertible model** (flow-based model) with a **predictive model**.

Isn't this model an overkill?

How would it work in the **multi-modal learning** scenario?



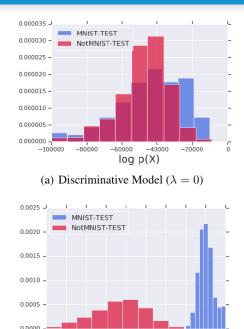
Nalisnick, E., et al. (2019). Hybrid models with deep and invertible features. arXiv preprint arXiv:1902.02767.

HYBRID MODELS AND OOD SAMPLE

Going back to first slides, we need a good notion of **p(x)**.

Distinguishing **out-of-distribution (OOD)** samples is very important.

Crucial for decision making, outlier detection, policy learning...



-5000-4500-4000-3500-3000-2500-2000-1500-1000-500 log p(X) (b) Hybrid Model

Nalisnick, Eric, et al. "Hybrid models with deep and invertible features." arXiv preprint arXiv:1902.02767 (2019).

Thank you!

Webpage: https://jmtomczak.github.io/

Code on github: https://github.com/jmtomczak/

Contact: jmk.tomczak@gmail.com