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We learn a neural network to classify images:
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IS GENERATIVE MODELING IMPORTANT?

We learn a neural network to classify images:

(-

p(panda|x)=0.99 noise p(pandal|x)=0.01
p(dog|x)=0.9

There is no semantic understanding of images.
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IS GENERATIVE MODELING IMPORTANT?

This simple example shows that:
« A discriminative model is (probably) not enough.
* We need a notion of uncertainty.

« We need to understand the reality.
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This simple example shows that:
« A discriminative model is (probably) not enough.
* We need a notion of uncertainty.
« We need to understand the reality.

A possible solution is generative modeling.
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IS GENERATIVE MODELING IMPORTANT?

|new data ﬁ

2 pe(yl|r) po(z,y) = po(y|x) po(x)
High probability
of a horse.

Highly probable
decision!
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High probability
of a horse.

Highly probable
decision!
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WHERE DO WE USE DEEP GENERATIVE

MODELING?

y

“ i want to talk to you .’
“ want to be with you . ”

“ do 't want to be with you .
i do n’t want to be with you .
she did n’t want to be with him .

”

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Text analysis

fitted model

Unlabeled
dataset

Active query
selection

Active Learning

ol
S

Graph
analysis

Image analysis

Provided | Generated

Medincal data

and more... \/J Qf

Reinforcement Learning




HOW TO FORMULATE GENERATIVE MODELS?

Generative

model

“
Autoregressive Flow-based Latent variable
(e.g., PixelCNN) (e.g., RealNVP, GLOW) / models N

» 4
Implicit models Prescribed models
(e.g., GANSs) (e.g., VAE)
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Training

Autoregressive models

(e.g., PixelCNN) Stable

Likelihood

Sampling

Slow

Compression

Flow-based models

(e.g., RealNVP) Stable Exact Fast/Slow No
Implicit models

(e.g., GANs) Unstable No Fast No
Prescribed models Stable Approximate Fact Ves

(e.g., VAEs)




HOW TO FORMULATE GENERATIVE MODELS?

Training

Autoregressive models
(e.g., PixelCNN) Stable
Flow-based models
(e.g., RealNVP)

Implicit models
(e.g., GANS) Unstable
Prescribed models

(e.g., VAEs) Stable
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Likelihood

Approximate

Sampling Compression

Fast/Slow




GENERATIVE MODELS AS (SPHERICAL)

COWS

VUf¥



GENERATIVE MODELS AS (SPHERICAL)
COWS




GENERATIVE MODELS AS (SPHERICAL)
COWS




Deep latent variable models
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GENERATIVE MODELING

Modeling in high-dimensional spaces is difficult.
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GENERATIVE MODELING

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

problematic

A possible solution: Latent Variable Models!
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GENERATIVE MODELING WITH LATENT
VARIABLES
Generative process: l

1. z ~ px(2)
2. x ~ po(x|2)

pe(x|z)
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GENERATIVE MODELING WITH LATENT

VARIABLES

Generative process:

1. z ~ px(2)
2. x ~ po(x|2)

Log of marginal distribution:

log pa(x) = log. [ palxlz) pa(2)dz

How to train such model efficiently?

35



VARIATIONAL INFERENCE FOR LATENT
VARIABLE MODELS

log po(x) = log / o(x|2) px(z)dz

= log/ 497 X)pg(x z) pa(z)dz

q¢(z|x)

po(x|z) pr(z)
/ »(z|x) log 75 (2%) dz

= Ezgy(21x) [log Pe(XIZ)] — KL (qu(ZIX)IIpA(Z))
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VARIATIONAL INFERENCE FOR LATENT
VARIABLE MODELS
log py(x) = log/ po(x|z) pa(z)dz /Variational posterior
gy (

g (e ) P2

po(X|z) px(z)
/ »(2]x) log 75 (2%) dz

= Ezgy(21x) [log Pe(XIZ)] — KL (qu(ZIX)IIpA(Z))
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VARIATIONAL INFERENCE FOR LATENT
VARIABLE MODELS

log pa(x) = log / po(x|2) px(z)dz
:@/ ZZEZ Bpg(x z) pa(z)dz

) ()
@77%( xNog q4(z|Xx) d

= Ezgy(21x) [log Pe(XIZ)] — KL (qu(ZIX)IIpA(Z))
. VU

Jensen’s inequality




VARIATIONAL INFERENCE FOR LATENT
VARIABLE MODELS

log po (x) = log / o(x|2) px(z)dz

N

= log/ 492 X)pg(x z) pr(z)dz

q¢(z|x)

po(x|z) pr(z)
/ +(z|x) log ETS dz

= Borgy (alx) [ log pe (XIZ)], — KL (qu(ZIX) 112} (Z)),

Y
30 Reconstruction error Regularization Vugf




VARIATIONAL INFERENCE FOR LATENT
VARIABLE MODELS

logpﬂ( ) log/ (X Z) p>\(z)dz decoder
_ log/ zgz ii po(x|z) px(z)dz encoder

marginal

/ |X)logp9(
= Exgoa) loepu(x |z ~ KL (o (2]x)[p2 (2)
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VARIATIONAL INFERENCE FOR LATENT
VARIABLE MODELS

logpﬂ( ) log/ (X Z) p>\(z)dz decoder
_ log/ zgz ii po(x|z) px(z)dz encoder

marginal

/ »(z]x) 1ogp9(x 2) Az}

q0(2|
=z (alx [IOQPG(XIZI/KL(%(ZIXI A (2)

. = Variational Auto-Encoder VU%




VARIATIONAL AUTO-ENCODERS

42

Variational posterior
(encoder) and likelihood
function (decoder) are
parameterized by neural
networks.

Reparameterization trick:
move the stochasticity to
independent random variables

g 3
b Ny -
& ul

| &7,

encoder net code decoder net

z = f(p, 0;¢€), where € ~ p(e)




VARIATIONAL AUTO-ENCODERS

VAE copies input to output through a bottleneck.
VAE learns a code of the data.

o

.
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y
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Z
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VARIATIONAL AUTO-ENCODERS

VAE copies input to output through a bottleneck.
VAE learns a code of the data.
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VARIATIONAL AUTO-ENCODERS

VAE has a marginal on the latent code.

VAE can generate new data.
T

| 0

@ X
g/'

code decoder net VU %{
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VARIATIONAL AUTO-ENCODERS

VAE has a marginal on the latent code.
VAE can generate new data.

V- >
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COMMON ISSUES WITH VAES

qo(z|x) o po(x|z) pi(2)

Weak decoders — bad generations/reconstructions
Weak encoders — bad latent representation
Weak marginals — bad generations

Variational posteriors — what family of distributions?

Others...



COMPONENTS OF VAES

q(2|%) o pa(x|2) px(2)

7/ ~ -
/ S o
I 3 ~A
Resnets Autoregressive models
DRAW Normalizing flows
Autoregressive models VampPrior
Normalizing flows Implicit prior
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COMPONENTS OF VAES

qo(z|x) o po(x|z) pi(2)

———
—
—

Normalizing flows
Discrete encoders
Hyperspherical dist.
Hyperbolic-normal dist.
Group theory

/

/
b

~
~
~
~

SSA

Resnets

DRAW

Autoregressive models
Normalizing flows

Autoregressive models
Normalizing flows
VampPrior

Implicit prior

50




COMPONENTS OF VAES

qo(z|x) o po(x|z) pi(2)

- /7 S
< 7/ S
b SA
g.OI'mTllZlng fC:IOWS Resnets Autoregressive models
H'Scre € :”C_O ?r:_ t DRAW Normalizing flows
yperspherical dist. Autoregressive models | | VampPrior
Hyperbolic-normal dist. Normalizing flows Implicit prior
Group theory

Adversarial learning
ELBO(x;0,¢,\) ---- > | MMD
o Wasserstein AE VU ‘,;lf




APPLICATIONS

Continuous variable
representation for:
e Interpolation
e Optimization
* Exploration

Variational
Autoencoder
jointly-trained
on properties

52

Gomez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4.2 (2018)



APPLICATIONS

1star the food was good but the service was horrible . took forever to get our food . we had to ask
twice for our check after we got our food . will not return .

tast I t . . .
ehgglr ai‘es re:y g:ia 2 star the food was good , but the service was terrible . took forever to get someone to take our drink
order . had to ask 3 times to get the check . food was ok , nothing to write about .
| LsTM |->| LsTM |—>| LsT™ |—>@—> CNN 3star came here for the first time last night . food was good . service was a little slow . food was just
Fr T e ok

4 star food was good , service was a little slow , but the food was pretty good . i had the grilled chicken
sandwich and it was really good . will definitely be back !
(a) VAE training graph using a dilated CNN decoder. Sstar food was very good , service was fast and friendly . food was very good as well . will be back !

tastes really great

tastes really great EOS

(0] (0] /O dilation=2
0/ >/ y Y dilation=1

_.Z_)) emg]::(;ing

o o o o
BOS tastes really great

Science

Politics .
C oy

(b) Digram of dilated CNN decoder.

o (a) Yahoo (b) Yelp V U %’

Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017




APPLICATIONS

Discrete
vVQ latents
256 hz

- [0, 128]
i Condition

Encoder Q

Downsample 64x WaveNet

Decoder

l Sample

Aot e

16 khz

€ [0,256]

reconstruction

54

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.

Discrete
latents
Sample .
_________________________ - 256 hz
::/C‘VIIQCOICIOCOIQ - 'll_)\
WaV?Net Condition
Prior

WaveNet
Decoder

generation

VUf¥



APPLICATIONS

observation

world mode

55

environment —
. J action
4 N C
MDN-RNN (M) >
\ J
I ) action

Screenshot Image

Screenshot Image

Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint. arXiv preprint arXiv:1803.10122.

Reconstruction

Reconstruction




APPLICATIONS

(Legend: [Il: Node emb. [TlH: Edge emb. —»:MLP 1., : Concrete distribution =--#-: Sampling J
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Kipf, T., Fetaya, E., Wang, K. C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. ICML 2018.



Flow-based models

VRIJE
UNIVERSITEIT
RN°  AMSTERDAM



THE CHANGE OF VARIABLES FORMULA

Let’s recall the change of variables formula with invertible

transformations: K Of () !
i\Zj—1
p(x) = 7o (20) 71;[1 det o

We can think of it as an invertible neural network:

A fl A f2 A
e > — e
— -— . —

> T

0 0

latent space pixel space
o VU
Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.




THE CHANGE OF VARIABLES FORMULA

Let’s recall the change of variables formula with invertible

transformations: K Of () !
i\Z;—1
p(x) = 7o (20) 71;[1 det o

We can think of it as an invertible neural network:

‘ fi ] Jo ‘
—_ —_— —_—
—  — e

0 0

latent space pixel space
’ VU¥
Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.




REALNVP

Design the invertible transformations as follows:
Yida = X1:4
Yd+1:D = Xd+1:D © exP (5 (X1:4)) + t (X1.4)

N

60 VU

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



REALNVP

Design the invertible transformations as follows:
Yi.da = X1:d
Yd+1:D = Xd+1:D © exp (s (X1:4)) + t (X1:4)

Invertible by design:

{ Yi:d = X1:d o { X1:d =Yida
Yit+1:D = Xd+1:D © exp (8 (x1:.4)) +t (X1:4) Xd+1:p = (Ya+1:0 —t(¥1:d)) ©® exp (=5 (¥1:d))
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Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



REALNVP

Design the invertible transformations as follows:
Yi.da = X1:d
Yd+1:D = Xd+1:D © exp (s (X1:.4)) + t (X1:4)
Invertible by design:
{ Yi.a = X1.d o { X1:d =Yid
Yd+1:D = Xd+1:D © exp (8 (X1.4)) + 1 (X1:4) Xd+1:p = (Ya+1:Dp — t(Y1:a)) © exp (=5 (¥1:d))

Easy Jacobian:

Iy Oax(D-a) M ~
dx(D—d =TT oo (s (x1.0)) — ex s (x1.0).
J= { 8}&;‘;{# diag (exp (s (x1:4))) ] det(d) = H p (s (x1.a); P ( ( d>3>

; VU

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



2
—
>
N
LL]
o




RESULTS




GLOW: REALNVP WITH 1X1 CONVOLUTIONS

A model contains ~1000 convolutions.
A new component: 1x1 convolution instead of a permutation

matrix. @
4+ | step of flow | x K
5
| affine coupling lay | | squ:eze |
t [
| invertible 1x1 conv | @“I split |
f .
I e | | ep of flow | x K x (L—1)
7y 4
[ e |
5
(a) One step of our flow. (b) Multi-scale architecture (Dinh et al., 2016).
< VU
o

Kingma, D. P, & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NeurlPS 2018
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GLOW: LATENT INTERPOLATION




INTEGER DISCRETE FLOW: NO NEED TO
CALCULATE JACOBIAN!




Future directions
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BLURRINESS AND SAMPLING IN VAES

70

How to avoid sampling from holes?

Should we follow geodesics in the
latent space?

How to use geometry of the latent

space to build better decoders?

How to build temporal decoders?

Latent space Input space




COMPRESSION AND VAES

71

Taking a deterministic & discrete
encoder allows to simplify the objective.

It is important to learn a powerful prior.
This is challenging!

Is it easier to learn a prior with temporal
dependencies”?

Can we alleviate some dependencies by
using hypernets?

receiver

b

£, SelEAN

code model
- Zi|lz_:
= p(zjlz<;)

T
S ]

z

_SENEEAN

code model

decoder [
p(xlz) |8 .

VUl

Habibian, A., van Rozendaal, T., Tomczak, J.M., & Cohen, T.S. (2019), Video Compression with Rate-Distortion Autoencoders, ICCV 2019



ACTIVE LEARNING/RL AND VAES

[ environment }<

Using latent representation to navigate action |

and/or quantify uncertainty. u
Formulating policies in the latent space

z
_ observation ! >
entirely. o ) C
world mode MDN-RNN (M)

/o

Do we need a better notion of sequential [ " | action

dependencies?

. VUf¥

Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint arXiv:1803.10122.



HYBRID AND FLOW-BASED MODELS

We need a better understanding of the latent space.

Joining an invertible model (flow-based model) with
a predictive model.

Isn’t this model an overkill?

invertible model

How would it work in the multi-modal learning
scenario?

. VU¥

Nalisnick, E., et al. (2019). Hybrid models with deep and invertible features. arXiv preprint arXiv:1902.02767.



HYBRID MODELS AND OOD SAMPLE

74

Going back to first slides, we need a good
notion of p(x).

Distinguishing out-of-distribution (OOD)
samples is very important.

Crucial for decision making, outlier

detection, policy learning...

0.000035 -
= MNIST-TEST
0.000030 - oy NOtMNIST-TEST

0.000025 -
0.000020 -

[
0.000015 -
0.000010 -
0.000005 - . l
B =
0

100000 00 0 0 00 DDOO 2000

log p(X)
(a) Discriminative Model (A = 0)

0.0025 4
s MNIST-TEST

0.0020 - NotMNIST-TEST

0.0015

0.0010 - -
0.0005 I I -
0.0000 —--. .-_ II
ooooooooooooooooooooooooooooooooooooooo

(b) Hybrid Model

Nalisnick, Eric, et al. "Hybrid models with deep and invertible features." arXiv preprint arXiv:1902.02767 (2019).




Thank you!
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Webpage:
https://jmtomczak.github.io/

Code on github:

https://github.com/jmtomczak/

Contact:
jmk.tomczak@gmail.com




